期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Study on fluidized-bed pyrolysis of waste paper
1
作者 肖刚 池涌 +3 位作者 倪明江 岑可法 肖睿 黄亚继 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期285-288,共4页
A lab-scale fluidized bed is setup and pyrolysis experiments are carried out. When temperature ranges from 400 to 700 ℃, the yields of solid residue, bio-oil and syngas range from 36% to 18%, 19% to 30% and 9% to 42%... A lab-scale fluidized bed is setup and pyrolysis experiments are carried out. When temperature ranges from 400 to 700 ℃, the yields of solid residue, bio-oil and syngas range from 36% to 18%, 19% to 30% and 9% to 42%, respectively, and the mass balance of pyrolysis ranges from 80% to 95%. At 400 to 700 ℃, the characteristics of bio-oil are similar and the heat value is about 10 MJ/kg. When the temperature is over 600℃, the yield of syngas increases approximately twice as much as that at 500 ℃. The yields of CO2 and CO increase from 70 to 230 L/kg and 50 to 106 L/kg, respectively, while the yield of syngas only increases about 5% when the temperature increases from 600 to 700 ℃. The results indicate that the pyrolysis mechanism of waste paper is similar from 400 to 700 ℃, while the yield of syngas can be affected by secondary pyrolysis of bio-oil. 展开更多
关键词 waste paper fluidized bed PYROLYSIS SYNGAS BIO-OIL
下载PDF
Effect of Waste Paper Fiber on Properties of Cementbased Mortar and Relative Mechanism 被引量:1
2
作者 王中平 li haoxin +1 位作者 蒋正武 chen qi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期419-426,共8页
The aim of this work was to investigate the effect of waste paper fiber on the properties of cement-based mortar and the relative mechanism. The cement-based mortars with various contents and mixing way of waste paper... The aim of this work was to investigate the effect of waste paper fiber on the properties of cement-based mortar and the relative mechanism. The cement-based mortars with various contents and mixing way of waste paper fibers were prepared and the slump flow, setting time and strength developments of all mortars were tested. Besides, Ca(OH)_2 content in hardened pastes at different ages and the microstructures of all mortar at 90 d were observed by scanning electron microscopy. The experimental results showed that in the process of mixing, more superplastizier was consumed to maintain the workability because of the absorption of water and superplastizer on waste paper fiber. With more waste paper fiber being added, longer setting time is available for the pastes with it because of the carbohydrate dissolving and its retarding to the cement hydration. Waste paper fiber is adverse to the early and later strength of cement-based mortar, but it increases the mortar strengths at 7 and 28 d. The strength, Ca(OH)_2 content and microstructure are related to the content and mixing way of waste paper fiber. Waste paper fiber helps produce the Ca(OH)_2 at 7 and 28 d, but this case is reverse at ages of 1 and 3 d. Overall, waste paper fiber leads to the appearance of more pores in the hardened paste. However, it increases the toughness of cement-based mortar. 展开更多
关键词 waste paper fibers setting times strength Ca(OH)_2 content microstructure
原文传递
The Interaction Effects of the Parameters on Optimization Design in Paper Production Waste Usage on Alkali-Activated Slag with Taguchi Method
3
作者 Teng Yi Shuenn-Ren Liou Wen-Yih Kuo 《Journal of Renewable Materials》 SCIE EI 2022年第6期1753-1772,共20页
The paper investigates the second-order interactions of parameters in an alkali-activated mixture of paper production waste(PPW)and blast furnace slag(BFS)in Taguchi method.The PPW including lime mud(LM)and paper slud... The paper investigates the second-order interactions of parameters in an alkali-activated mixture of paper production waste(PPW)and blast furnace slag(BFS)in Taguchi method.The PPW including lime mud(LM)and paper sludge(PS).This paper provides the experimental models to assess the compressive and flexural strength of them at 7-day and 28-day.The results have shown that the second-order interactions between PPW and alkali-activated activator exists in each experimental model,and the significant interactions affect the selection of optimal compositions.Compared with the interactions between the PPW themselves,the interactions between PPW and alkali-activated parameters are the main significant factors affecting its physical properties.In each experimental model,the maximum compressive strength was 47.41 MPa in 7-day and 65.64 MPa in 28-day.Compared with the confirmatory experiments,the deviation of prediction calculated by experimental models was 3.08%and 0.56%,respectively.The maximum flexural strength was 5.74 MPa in 7-day and 5.96 MPa in 28-day;compared with the confirmatory experiments,the deviation of prediction calculated by experimental models was 5.40%and 0.17%.Considering the influence of circular materials,30%of PPW should be a suitable ratio to replace BFS as the raw material of alkali-activated slag(AAS). 展开更多
关键词 paper production waste alkali-activated slag taguchi method interactions of parameters experimental model
下载PDF
China's Sustainable Strategy on Waste Paper as Reusable Resources
4
作者 Hua Feng Shinichi Tomonari 《Journal of Environmental Science and Engineering(A)》 2012年第9期1142-1148,共7页
Resource reuse and sustainability are gradually becoming hot issues nowadays. Waste paper is an important material in paper reproducing. Comparing to wood pulp, waste paper is more energy-saving and environmentally-fr... Resource reuse and sustainability are gradually becoming hot issues nowadays. Waste paper is an important material in paper reproducing. Comparing to wood pulp, waste paper is more energy-saving and environmentally-friendly. Being a top of one paper producing country in the world, China needs a continuous large quantity of waste paper supply. Waste paper strategy" is being taken seriously until the ti^ding of paper manufacttlring period. This paper strives to examine the waste paper circle and the changes of waste paper resource strategy in China nowadays by doing both amount and price analysis on waste paper trade. It is found that China now strives to promote a sustainability of waste paper resource reuse by drawing down waste paper import, increasing domestic reuse and increasing import channels and categories. 展开更多
关键词 waste paper resource strategy REUSE China
下载PDF
Treatment and Resource Utilization of Deinking Sludge from Regenerated Paper Mill
5
作者 Yuting ZHANG 《Meteorological and Environmental Research》 CAS 2023年第5期54-56,共3页
To fully utilize secondary resources,it will inevitably generate a large amount of deinking sludge using waste paper as raw material for paper making.The sludge contains small fibers and dissolved substances of variou... To fully utilize secondary resources,it will inevitably generate a large amount of deinking sludge using waste paper as raw material for paper making.The sludge contains small fibers and dissolved substances of various chemicals.After adding flocculant and settling treatment,deinked sludge is formed.However,its organic matter content can reach a high level of 40%to 50%,and it can also be reused,effectively avoiding the harmful impact of papermaking sludge on the environment. 展开更多
关键词 waste paper Deinking sludge Resource utilization
下载PDF
Paper-derived cobalt and nitrogen co-doped carbon nanotube@porous carbon as a nonprecious metal electrocatalyst for the oxygen reduction reaction 被引量:3
6
作者 Gaopeng Liu Bin Wang +5 位作者 Li Xu Penghui Ding Pengfei Zhang Jiexiang Xia Huaming Li Junchao Qian 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期790-799,共10页
The oxygen reduction reaction(ORR)is a vitally important process in fuel cells.The development of high‐performance and low‐cost ORR electrocatalysts with outstanding stability is essential for the commercialization ... The oxygen reduction reaction(ORR)is a vitally important process in fuel cells.The development of high‐performance and low‐cost ORR electrocatalysts with outstanding stability is essential for the commercialization of the electrochemical energy technology.Herein,we report a facile synthesis of cobalt(Co)and nitrogen(N)co‐doped carbon nanotube@porous carbon(Co/N/CNT@PC‐800)electrocatalyst through a one‐step pyrolysis of waste paper,dicyandiamide,and cobalt(II)acetylacetonate.The surface of the hierarchical porous carbon supported a large number of carbon nanotubes(CNTs),which were derived from dicyandiamide through the catalysis of Co.The addition of Co resulted in the formation of a hierarchical micro/mesoporous structure,which was beneficial for the exposure of active sites and rapid transportation of ORR‐relevant species(O2,H+,OH?,and H2O).The doped N and Co formed more active sites to enhance the ORR activity of the electrocatalyst.The Co/N/CNT@PC‐800 material exhibited optimal ORR performance with an onset potential of 0.005 V vs.Ag/AgCl and a half‐wave potential of?0.173 V vs.Ag/AgCl.Meanwhile,the electrocatalyst showed an excellent methanol tolerance and a long‐term operational durability than that of Pt/C,as well as a quasi‐four‐electron reaction pathway.The low‐cost and simple synthesis approach makes the Co/N/CNT@PC‐800 a prospective electrocatalyst for the ORR.Furthermore,this work provides an alternative approach for exploring the use of biomass‐derived electrocatalysts for renewable energy applications. 展开更多
关键词 Oxygen reduction reaction waste paper BIOMASS Porous carbon COBALT
下载PDF
Utilization of pulp and paper industrial wastewater for production of polyhydroxybutyrate by Bacillus sonorensis NAM5
7
作者 Mahak Mittal Anish Bhuwal +1 位作者 Poonam Sharma Neeraj K.Aggarwal 《Systems Microbiology and Biomanufacturing》 EI 2023年第4期805-818,共14页
Given the environmental pollution caused by petroleum-based plastics,finding alternative substitutes for sustainability has become critical.Polyhydroxybutyrate(PHB),a storage food material that is accumulated by sever... Given the environmental pollution caused by petroleum-based plastics,finding alternative substitutes for sustainability has become critical.Polyhydroxybutyrate(PHB),a storage food material that is accumulated by several bacteria,is biodegrad-able,safe,environment friendly and comparable to conventional plastics.However,scale-up is an issue due to high produc-tion cost.Substrate replacement using renewable,plentiful,sustainable and low-cost carbon sources derived from industrial waste facilitates waste reduction,while also enabling the synthesis of value-added products.In this context,inexpensive pulp and paper industrial waste as carbon source was exploited for production of PHB by using previously isolated(Source:hot springs of Manikarn,Himachal Pradesh,India)thermophilic bacteria Bacillus sonorensis NAM5 under optimized conditions in a fermenter.Production was done in a fermenter under optimized conditions(72 h of incubation at 50℃temperature and 7 pH)to enhance the accumulation of PHB.The bacterial strain was able to produce 5.28±0.11 gL^(-1)after 72 h of growth without any carbon and nitrogen source supplementation to the industrial effluent.The culture accumulated 66%PHB of cell dry weight(CDW).The produced polymer was characterized through FTIR,NMR and TGA.Additionally,bacteria-treated industrial wastewater was used for phytotoxicity assay on agriculturally important crops such as wheat,maize and mung,which exhibited considerable difference in growth parameters. 展开更多
关键词 POLYHYDROXYBUTYRATE Pulp and paper waste FERMENTATION Bacillus sonorensis Phytotoxicity assay
原文传递
Characterization of Manmade and Recycled Cellulosic Fibers for Their Application in Building Materials 被引量:1
8
作者 Nadezda Stevulova Viola Hospodarova +8 位作者 Adriana Estokova Eva Singovszka Marian Holub Stefan Demcak Jaroslav Briancin Anton Geffert Frantisek Kacik Vojtech Vaclavik Tomas Dvorsky 《Journal of Renewable Materials》 SCIE 2019年第11期1121-1145,共25页
The aim of this study was to characterize two types of cellulosic fibers obtained from bleached wood pulp and unbleached recycled waste paper with different cellulose content(from 47.4 percent up to 82 percent),to com... The aim of this study was to characterize two types of cellulosic fibers obtained from bleached wood pulp and unbleached recycled waste paper with different cellulose content(from 47.4 percent up to 82 percent),to compare and to analyze the potential use of the recycled fibers for building application,such as plastering mortar.Changes in the chemical composition,cellulose crystallinity and degree of polymerization of the fibers were found.The recycled fibers of lower quality showed heterogeneity in the fiber sizes(width and length),and they had greater surface roughness in comparison to high purity wood pulp samples.The high purity fibers(cellulose content>80.0 percent)had greater crystallinity and more homogeneous and smooth surfaces than the recycled fibers.The presence of calcite and kaolinite in all of the recycled cellulosic fibers samples was confirmed,whereas only one wood pulp sample contained calcite.The influence of the chemical composition was reflected in the fiber density values.Changes in the chemical composition and cellulose structure of the fibers affected the specific surface area,porosity and thermo physical properties of the fibers.More favorable values of thermal conductivity were reached for the recycled fibers than for the wood pulp samples.Testing the suitability of the recycled fibers with inorganic impurities originating from the paper-making processes for their use as fillers in plastering mortars(0.5 wt.%fiber content of the total weight of the filler and binder)confirmed their application by achieving a compressive strength value of 28 day-cured fiber-cement mortar required by the standard as well as by measured more favorable value of capillary water absorption coefficient. 展开更多
关键词 Wood pulp waste paper fiber properties characterization compressive strength of mortars
下载PDF
Photodegradation of Orange Ⅱ using waste paper sludge-derived heterogeneous catalyst in the presence of oxalate under ultraviolet light emitting diode irradiation 被引量:1
9
作者 Guoqiang Zhou Jinyi Guo +2 位作者 Guowang Zhou Xiankai Wan Huixiang Shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第9期63-70,共8页
A waste paper sludge-derived heterogeneous catalyst(WPS-Fe-350) was synthesized via a facile method and successfully applied for the degradation of Orange Ⅱ in the presence of oxalic acid under the illumination of ... A waste paper sludge-derived heterogeneous catalyst(WPS-Fe-350) was synthesized via a facile method and successfully applied for the degradation of Orange Ⅱ in the presence of oxalic acid under the illumination of ultraviolet light emitting diode(UV-LED) Powder X-ray diffraction,Fourier-transform infrared spectroscopy,scanning electronic microscopy and N2 sorption isotherm analysis indicated the formation of α-Fe2O3 in the mesoporous nanocomposite.The degradation test showed that WPS-Fe-350 exhibited rapid Orange Ⅱ(OⅡ) degradation and mineralization in the presence of oxalic acid under the illumination of UV-LED.The effects of p H,oxalic acid concentration and dosage of the catalyst on the degradation of OⅡ were evaluated,respectively.Under the optimal conditions(1 g/L catalyst dosage,2 mmol/L oxalic acid and p H 3.0),the degradation percentage for a solution containing 30 mg/L OⅡ reached 83.4% under illumination by UV-LED for 80 min.Moreover,five cyclic tests for OⅡ degradation suggested that WPS-Fe-350 exhibited excellent stability of catalytic activity.Hence,this study provides an alternative environmentally friendly way to reuse waste paper sludge and an effective and economically viable method for degradation of azo dyes and other refractory organic pollutants in water. 展开更多
关键词 Heterogeneous catalyst waste paper sludge Oxalic acid Orange
原文传递
废纸资源化的新技术
10
作者 张春红 《资源再生》 2007年第2期32-35,共4页
废纸资源化是解决环境污染、原料短缺和能源紧张问题的有效途径之一。目前,世界各国关于废纸资源化技术的研究已经取得很大进展。因为原料易得,工艺过程简单,既节约资源,又保护环境,因此,可以取行良好的经济效益和社会效益。而我国目前... 废纸资源化是解决环境污染、原料短缺和能源紧张问题的有效途径之一。目前,世界各国关于废纸资源化技术的研究已经取得很大进展。因为原料易得,工艺过程简单,既节约资源,又保护环境,因此,可以取行良好的经济效益和社会效益。而我国目前废纸资源化技术单一,主要用于造纸业。为了更好地节约森林资源,保护生态环境,有必要探索废纸资源化的新技术。 展开更多
关键词 waste paper resource recovery environmental protection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部