By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (...By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.展开更多
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall...Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.展开更多
Cable-driven parallel robots(CDPRs) are categorized as a type of parallel manipulators. In CDPRs, flexible cables are used to take the place of rigid links. The particular property of cables provides CDPRs several adv...Cable-driven parallel robots(CDPRs) are categorized as a type of parallel manipulators. In CDPRs, flexible cables are used to take the place of rigid links. The particular property of cables provides CDPRs several advantages, including larger workspaces, higher payload-to-weight ratio and lower manufacturing costs rather than rigid-link robots. In this paper, the history of the development of CDPRs is introduced and several successful latest application cases of CDPRs are presented. The theory development of CDPRs is introduced focusing on design, performance analysis and control theory. Research on CDPRs gains wide attention and is highly motivated by the modern engineering demand for large load capacity and workspace. A number of exciting advances in CDPRs are summarized in this paper since it is proposed in the 1980 s, which points to a fruitful future both in theory and application. In order to meet the increasing requirements of robot in different areas, future steps foresee more in-depth research and extension applications of CDPRs including intelligent control, composite materials, integrated and reconfigurable design.展开更多
To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
Because of their elastic links and joints,high-speed parallel robots for pick-and-place operations inevitably suffer from residual vibrations that significantly degrade their positioning accuracy.An effective approach...Because of their elastic links and joints,high-speed parallel robots for pick-and-place operations inevitably suffer from residual vibrations that significantly degrade their positioning accuracy.An effective approach based on the input shaping technique is presented in this paper for suppressing the residual vibration in these parallel robots.After addressing the design principle of an input shaper for a parallel robot with flexible actuated joints,a robust optimal input shaper is developed by considering the configuration-dependent flexible modes and minimizing the maximum percentage of residual vibration at the end-effector.The input shaper allows a good overall performance to be achieved throughout the entire workspace.Experimental results on a 4-DOF SCARA-type parallel robot show that the residual vibration of the end-effector is dramatically reduced and the dynamic positioning accuracy of the robot significantly improved.展开更多
Continuation method solving forward kinematics problem of parallel robot was discussed. And through a coefficient-parameter continuation method the efficiency and feasibility of continuation method were improved. Usin...Continuation method solving forward kinematics problem of parallel robot was discussed. And through a coefficient-parameter continuation method the efficiency and feasibility of continuation method were improved. Using this method all forward solutions of a new parallel robot model which was put forward lately by Robot Open Laboratory of Science Institute of China were obtained. Therefore it provided the basis of mechanism analysis and real-time control for new model.展开更多
High-speed parallel robots have been extensively utilized in the light industry.However,the influence of the nonlinear dynamic characteristics of high-speed parallel robots on system’s dynamic response and stable ope...High-speed parallel robots have been extensively utilized in the light industry.However,the influence of the nonlinear dynamic characteristics of high-speed parallel robots on system’s dynamic response and stable operation cannot be ignored during the high-speed reciprocating motion.Thus,trajectory planning is essential for efficiency and stability from pick-and-place(PAP)actions.This paper presents a method for planning the equal-height pick-and-place trajectory considering velocity constraints to improve the PAP efficiency and stability of high-speed parallel robots.The velocity constraints in the start-and-end points can reduce vibration from picking and placing,making the trajectory more suitable to complex beltline situations.Based on velocity constraints,trajectory optimization includes trajectory smoothness and joint torque to optimize cycle time is carried out.This paper proposes an online trajectory optimization solution.By using back propagation(BP)neural networks,the solution is simplified and can be solved in real-time.Simulation and experiments were carried out on the SR4 parallel robot.The results show that the proposed method improves the efficiency,smoothness,and stability of the robot.This paper proposes an online trajectory planning method which is velocity constraints based and can improve the efficiency and stability of high-speed parallel robots.The work of this research is conducive to finely applying high-speed parallel robots.展开更多
Parallel robot is used in many different fields nowadays, but the singularity of 3-RRUR parallel robot is more complicated, so a method to analyze the singularity of the 3-RRUR parallel robot is very necessary. First,...Parallel robot is used in many different fields nowadays, but the singularity of 3-RRUR parallel robot is more complicated, so a method to analyze the singularity of the 3-RRUR parallel robot is very necessary. First, the Jacobian matrix was built based on the differential transform method through the transfer matrixes between the poles. The connection between the position parameters and singularity condition was built through the analysis of the Jacobian matrix. Second, the effect on the singularity from the position parameters was analyzed, and then the singularity condition was confirmed. The effect on the singularity condition from position parameters was displayed by the curved surface charts to provide a basic method for the designing of the parallel robot. With this method, the singularity condition could be got when the length of each link is firmed, so it can be judged that if a group of parameters are appropriate or not, and the method also provides warrant for workspace and path planning of the parallel robot.展开更多
According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's g...According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.展开更多
Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to con...Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.展开更多
For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of th...For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of the effective workspace and its solution method are given.The effectiveworkspace height(EWH)and global condition number index(GCI)of Jacobi matrix are selected asthe optimized objective functions.Setting the robot in two different orientations,the geometric pa-rameters are optimized by the multi-objective genetic algorithm named non-dominated sorting geneticalgorithm II(NSGA-II),and a set of structural parameters is obtained.The optimization results areverified by four indicators with the robot’s moving platform at different orientations.The resultsshow that,after optimization,the fixed-orientation workspace volume,the effective workspace heightand the effective workspace volume increase by 32.4%,17.8%and 72.9%on average,respec-tively.GCI decreases by 6.8%on average.展开更多
The structural design, analysis and experimental verification of a novel planar parallel robot that includes parallelogram linkages are reported in this paper. A design methodology combining finite element analysis (...The structural design, analysis and experimental verification of a novel planar parallel robot that includes parallelogram linkages are reported in this paper. A design methodology combining finite element analysis (FEA) and flexible dynamics is employed in the analysis. The appropriate natural frequencies of robot throughout workspaee are predicted, and the effects of payload, flexibility of joints, cross section and orientations of robot on the natural frequency are analyzed by simulation. Extensive structural vibration experiments with the completed manipulator confirm the predicted structural vibration characteristics throughout the workspace. The experiment also proves the robot's performance under a fuzzy self-tuning PI controller.展开更多
Industrial metrology deals with measurements in production environment. It concerns calibration procedures as well as control of measurement processes. Measuring devices have been evolving from manual theodolites, ele...Industrial metrology deals with measurements in production environment. It concerns calibration procedures as well as control of measurement processes. Measuring devices have been evolving from manual theodolites, electronic theodolites, robotic total stations, to a relatively new kind of laser-based systems known as laser trackers. Laser trackers are 3D coordinate measuring devices that accurately measure large (and relatively distant) objects by computing spatial coordinates of optical targets held against those objects. In addition, laser trackers are used to align truthfully large mechanical parts. However, such aligning can be done in moving parts, for instance during robot calibration in a welding line. In this case, serial robots are controlled in order to keep a prescribed trajectory to accomplish its task properly. Nevertheless, in spite of a good control algorithm design, as time goes by, deviations appear and a calibration process is necessary. It is well known that laser tracker systems are produced by very well established enterprises but their laser products may result expensive for some (small) industries. We offer two parallel robot-based laser tracker systems models whose implementation would result cheaper than sophisticated laser devices and takes advantage of the parallel robot bondages as accuracy and high payload. The types of parallel robots evaluated were 3-SPS-1-S and 6-PUS. Modelling of the parallel robots was done by analytical and numerical techniques. The latter includes classical and artificial intelligence-based algorithms. The control performance was evaluated between classical and intelligent controllers.展开更多
Friction stir welding(FSW)has been widely applied in many fields as an alternative to traditional fusion welding.Although serial robots can provide the orientation capability required to weld along curved surfaces,the...Friction stir welding(FSW)has been widely applied in many fields as an alternative to traditional fusion welding.Although serial robots can provide the orientation capability required to weld along curved surfaces,they cannot adequately support the huge axial downward forces that FSW generates.Available parallel mechanism architectures,particularly redundantly actuated architectures for FSW,are still very limited.In this paper,a redundantly actuated 2 UPR-2 RPU parallel robot for FSW is proposed,where U denotes a universal joint,R denotes a revolute joint and P denotes a prismatic pair.First,its semi-symmetric structure is described.Next,inverse kinematics analysis involving an analytical representation of rotational axes is implemented.Velocity analysis is also conducted,which leads to the formation of a Jacobian matrix.Sensitivity performance is evaluated utilizing level set and convex optimization methods,where the local sensitivity indices are unit consistent,coordinate free,and of definite physical significance.Furthermore,global and hierarchical sensitivity indices are proposed for the design process.Finally,dimension synthesis is conducted based on the sensitivity indices and the optimal link parameters of the parallel robot are obtained.In summary,this paper proposes a dimensional synthesis method for a redundantly actuated parallel robot for FSW based on sensitivity indices.展开更多
A parallel robot featwes low inertia moment of end effector, high mechanical rigitity, high mobility, no accumulation of motion error at end effector and high capacity of load, and it has found a wide applications in ...A parallel robot featwes low inertia moment of end effector, high mechanical rigitity, high mobility, no accumulation of motion error at end effector and high capacity of load, and it has found a wide applications in various fields such as automobile assembly line, earth digging machine, conjuncture of aircraft and flight simulator. In this paper the kinematics of a novel style 6 HTRT Parallel Robot is studied. The algorithm for an inverse kinematic problem of the parallel robot considering the constraint condition is presented. By the use of vector cross product method, the comprehensive coefficient of the parallel mechanism is introduced and the Jacobian matrix of a 6 HTRT parallel robot is presented. The relationship between the velocity of end manipulator and the generalized velocity is also studied with the method of Jacobian matrix. Using the result of study in mechanical dimension synthesis, better performance is achieved with the parallel robot. In motion control, it will be helpful for us to simplify the control algorithm and make more efficient trajectory planning.展开更多
Structural synthesis for 4-DOF parallel manipulators using screw theory issystematically studied. Motion properties and constraint conditions of 4-DOF parallel manipulatorsaccording to the relationship between screw a...Structural synthesis for 4-DOF parallel manipulators using screw theory issystematically studied. Motion properties and constraint conditions of 4-DOF parallel manipulatorsaccording to the relationship between screw and reciprocal screw are analyzed. Mathematicalexpressions for constraint screws and twist screws of moving platform are constructed, and allpossible limbs, which provide one or more force constraints, are enumerated. Finally, a parallelmanipulator with 3-rotation-DOF and 1-translation-DOF is used as an example to describe thesynthesis procedure for symmetrical and non-symmetrical 4-DOF parallel manipulators.展开更多
How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model mus...How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model must first be constructed and then solved by programming.Obviously, this method is not very practical. This paper,therefore, proposes a new way of approach with a new method using 3- D animation for the solving of coupling relations in the 6 - DOF parallel robot. This method is much simpler and its solving accuracy approaches that of the more complicated analytic method.展开更多
A convenient and effective close loop control scheme, based on the analysis of the robot structure and its control link, has been proposed to satisfy the 2D mini-parallel-carve robot design in this paper. With the int...A convenient and effective close loop control scheme, based on the analysis of the robot structure and its control link, has been proposed to satisfy the 2D mini-parallel-carve robot design in this paper. With the introduction of sequent deduction and reversed simulation in the conceiving phase, but more important, with the adoption of the proper restriction to reassure the exclusive result of coordinate transformation and movement planning, the equipment is designed and completed finally with satisfy conclusion.展开更多
The internal force antagonism(IFA)problem is one of the most important issues limiting the applications and popularization of redundant parallel robots in industry.Redundant cable-driven parallel robots(RCDPRs)and red...The internal force antagonism(IFA)problem is one of the most important issues limiting the applications and popularization of redundant parallel robots in industry.Redundant cable-driven parallel robots(RCDPRs)and redundant rigid parallel robots(RRPRs)behave very differently in this problem.To clarify the essence of IFA,this study first analyzes the causes and influencing factors of IFA.Next,an evaluation index for IFA is proposed,and its calculating algorithm is developed.Then,three graphical analysis methods based on this index are proposed.Finally,the performance of RCDPRs and RRPRs in IFA under three configurations are analyzed.Results show that RRPRs produce IFA in nearly all the areas of the workspace,whereas RCDPRs produce IFA in only some areas of the workspace,and the IFA in RCDPRs is milder than that RRPRs.Thus,RCDPRs more fault-tolerant and easier to control and thus more conducive for industrial application and popularization than RRPRs.Furthermore,the proposed analysis methods can be used for the configuration optimization design of RCDPRs.展开更多
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How...Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.展开更多
基金National Natural Science Foundation of China(No.51275486)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111420110005)
文摘By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.
基金Supported by National Natural Science Foundation of China(Grant No.51305222)National Key Scientific and Technological Program of China(Grant No.2013ZX04001-021)
文摘Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
基金Supported by National Natural Science Foundation of China(Grant Nos.51605126,51575150,91748109)
文摘Cable-driven parallel robots(CDPRs) are categorized as a type of parallel manipulators. In CDPRs, flexible cables are used to take the place of rigid links. The particular property of cables provides CDPRs several advantages, including larger workspaces, higher payload-to-weight ratio and lower manufacturing costs rather than rigid-link robots. In this paper, the history of the development of CDPRs is introduced and several successful latest application cases of CDPRs are presented. The theory development of CDPRs is introduced focusing on design, performance analysis and control theory. Research on CDPRs gains wide attention and is highly motivated by the modern engineering demand for large load capacity and workspace. A number of exciting advances in CDPRs are summarized in this paper since it is proposed in the 1980 s, which points to a fruitful future both in theory and application. In order to meet the increasing requirements of robot in different areas, future steps foresee more in-depth research and extension applications of CDPRs including intelligent control, composite materials, integrated and reconfigurable design.
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金Supported by National Natural Science Foundation of China(Grant No.51721003)State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS–2018–KF-09)。
文摘Because of their elastic links and joints,high-speed parallel robots for pick-and-place operations inevitably suffer from residual vibrations that significantly degrade their positioning accuracy.An effective approach based on the input shaping technique is presented in this paper for suppressing the residual vibration in these parallel robots.After addressing the design principle of an input shaper for a parallel robot with flexible actuated joints,a robust optimal input shaper is developed by considering the configuration-dependent flexible modes and minimizing the maximum percentage of residual vibration at the end-effector.The input shaper allows a good overall performance to be achieved throughout the entire workspace.Experimental results on a 4-DOF SCARA-type parallel robot show that the residual vibration of the end-effector is dramatically reduced and the dynamic positioning accuracy of the robot significantly improved.
文摘Continuation method solving forward kinematics problem of parallel robot was discussed. And through a coefficient-parameter continuation method the efficiency and feasibility of continuation method were improved. Using this method all forward solutions of a new parallel robot model which was put forward lately by Robot Open Laboratory of Science Institute of China were obtained. Therefore it provided the basis of mechanism analysis and real-time control for new model.
基金National Natural Science Foundation of China(Grant Nos.51922057,91948301).
文摘High-speed parallel robots have been extensively utilized in the light industry.However,the influence of the nonlinear dynamic characteristics of high-speed parallel robots on system’s dynamic response and stable operation cannot be ignored during the high-speed reciprocating motion.Thus,trajectory planning is essential for efficiency and stability from pick-and-place(PAP)actions.This paper presents a method for planning the equal-height pick-and-place trajectory considering velocity constraints to improve the PAP efficiency and stability of high-speed parallel robots.The velocity constraints in the start-and-end points can reduce vibration from picking and placing,making the trajectory more suitable to complex beltline situations.Based on velocity constraints,trajectory optimization includes trajectory smoothness and joint torque to optimize cycle time is carried out.This paper proposes an online trajectory optimization solution.By using back propagation(BP)neural networks,the solution is simplified and can be solved in real-time.Simulation and experiments were carried out on the SR4 parallel robot.The results show that the proposed method improves the efficiency,smoothness,and stability of the robot.This paper proposes an online trajectory planning method which is velocity constraints based and can improve the efficiency and stability of high-speed parallel robots.The work of this research is conducive to finely applying high-speed parallel robots.
基金Supported by National High Technology Research and Development Program of China(2009AA04Z207)National Defense Basic Scientific Research Program of China(A2220080252)
文摘Parallel robot is used in many different fields nowadays, but the singularity of 3-RRUR parallel robot is more complicated, so a method to analyze the singularity of the 3-RRUR parallel robot is very necessary. First, the Jacobian matrix was built based on the differential transform method through the transfer matrixes between the poles. The connection between the position parameters and singularity condition was built through the analysis of the Jacobian matrix. Second, the effect on the singularity from the position parameters was analyzed, and then the singularity condition was confirmed. The effect on the singularity condition from position parameters was displayed by the curved surface charts to provide a basic method for the designing of the parallel robot. With this method, the singularity condition could be got when the length of each link is firmed, so it can be judged that if a group of parameters are appropriate or not, and the method also provides warrant for workspace and path planning of the parallel robot.
基金Supported by National Natural Science Foundation of China (No. 50375106) , the State Scholarship Fund (No. 2004812032) and Key Laboratory of Intelligent Manufacturing at Shantou University ( No. Imstu-2002-11).
文摘According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.
基金Innovation Fund of Harbin,China (No.2006RFQXG036)
文摘Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.
基金Supported by the National Key R&D Program of China(No.2020YFB1313803)。
文摘For the narrow workspace problem of the universal-prismatic-universal(UPU)parallel robotwith fixed orientation,a kind of multi-objective genetic algorithm is studied to optimize the robot’sworkspace.The concept of the effective workspace and its solution method are given.The effectiveworkspace height(EWH)and global condition number index(GCI)of Jacobi matrix are selected asthe optimized objective functions.Setting the robot in two different orientations,the geometric pa-rameters are optimized by the multi-objective genetic algorithm named non-dominated sorting geneticalgorithm II(NSGA-II),and a set of structural parameters is obtained.The optimization results areverified by four indicators with the robot’s moving platform at different orientations.The resultsshow that,after optimization,the fixed-orientation workspace volume,the effective workspace heightand the effective workspace volume increase by 32.4%,17.8%and 72.9%on average,respec-tively.GCI decreases by 6.8%on average.
文摘The structural design, analysis and experimental verification of a novel planar parallel robot that includes parallelogram linkages are reported in this paper. A design methodology combining finite element analysis (FEA) and flexible dynamics is employed in the analysis. The appropriate natural frequencies of robot throughout workspaee are predicted, and the effects of payload, flexibility of joints, cross section and orientations of robot on the natural frequency are analyzed by simulation. Extensive structural vibration experiments with the completed manipulator confirm the predicted structural vibration characteristics throughout the workspace. The experiment also proves the robot's performance under a fuzzy self-tuning PI controller.
文摘Industrial metrology deals with measurements in production environment. It concerns calibration procedures as well as control of measurement processes. Measuring devices have been evolving from manual theodolites, electronic theodolites, robotic total stations, to a relatively new kind of laser-based systems known as laser trackers. Laser trackers are 3D coordinate measuring devices that accurately measure large (and relatively distant) objects by computing spatial coordinates of optical targets held against those objects. In addition, laser trackers are used to align truthfully large mechanical parts. However, such aligning can be done in moving parts, for instance during robot calibration in a welding line. In this case, serial robots are controlled in order to keep a prescribed trajectory to accomplish its task properly. Nevertheless, in spite of a good control algorithm design, as time goes by, deviations appear and a calibration process is necessary. It is well known that laser tracker systems are produced by very well established enterprises but their laser products may result expensive for some (small) industries. We offer two parallel robot-based laser tracker systems models whose implementation would result cheaper than sophisticated laser devices and takes advantage of the parallel robot bondages as accuracy and high payload. The types of parallel robots evaluated were 3-SPS-1-S and 6-PUS. Modelling of the parallel robots was done by analytical and numerical techniques. The latter includes classical and artificial intelligence-based algorithms. The control performance was evaluated between classical and intelligent controllers.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1713202,51525504).
文摘Friction stir welding(FSW)has been widely applied in many fields as an alternative to traditional fusion welding.Although serial robots can provide the orientation capability required to weld along curved surfaces,they cannot adequately support the huge axial downward forces that FSW generates.Available parallel mechanism architectures,particularly redundantly actuated architectures for FSW,are still very limited.In this paper,a redundantly actuated 2 UPR-2 RPU parallel robot for FSW is proposed,where U denotes a universal joint,R denotes a revolute joint and P denotes a prismatic pair.First,its semi-symmetric structure is described.Next,inverse kinematics analysis involving an analytical representation of rotational axes is implemented.Velocity analysis is also conducted,which leads to the formation of a Jacobian matrix.Sensitivity performance is evaluated utilizing level set and convex optimization methods,where the local sensitivity indices are unit consistent,coordinate free,and of definite physical significance.Furthermore,global and hierarchical sensitivity indices are proposed for the design process.Finally,dimension synthesis is conducted based on the sensitivity indices and the optimal link parameters of the parallel robot are obtained.In summary,this paper proposes a dimensional synthesis method for a redundantly actuated parallel robot for FSW based on sensitivity indices.
文摘A parallel robot featwes low inertia moment of end effector, high mechanical rigitity, high mobility, no accumulation of motion error at end effector and high capacity of load, and it has found a wide applications in various fields such as automobile assembly line, earth digging machine, conjuncture of aircraft and flight simulator. In this paper the kinematics of a novel style 6 HTRT Parallel Robot is studied. The algorithm for an inverse kinematic problem of the parallel robot considering the constraint condition is presented. By the use of vector cross product method, the comprehensive coefficient of the parallel mechanism is introduced and the Jacobian matrix of a 6 HTRT parallel robot is presented. The relationship between the velocity of end manipulator and the generalized velocity is also studied with the method of Jacobian matrix. Using the result of study in mechanical dimension synthesis, better performance is achieved with the parallel robot. In motion control, it will be helpful for us to simplify the control algorithm and make more efficient trajectory planning.
文摘Structural synthesis for 4-DOF parallel manipulators using screw theory issystematically studied. Motion properties and constraint conditions of 4-DOF parallel manipulatorsaccording to the relationship between screw and reciprocal screw are analyzed. Mathematicalexpressions for constraint screws and twist screws of moving platform are constructed, and allpossible limbs, which provide one or more force constraints, are enumerated. Finally, a parallelmanipulator with 3-rotation-DOF and 1-translation-DOF is used as an example to describe thesynthesis procedure for symmetrical and non-symmetrical 4-DOF parallel manipulators.
文摘How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model must first be constructed and then solved by programming.Obviously, this method is not very practical. This paper,therefore, proposes a new way of approach with a new method using 3- D animation for the solving of coupling relations in the 6 - DOF parallel robot. This method is much simpler and its solving accuracy approaches that of the more complicated analytic method.
文摘A convenient and effective close loop control scheme, based on the analysis of the robot structure and its control link, has been proposed to satisfy the 2D mini-parallel-carve robot design in this paper. With the introduction of sequent deduction and reversed simulation in the conceiving phase, but more important, with the adoption of the proper restriction to reassure the exclusive result of coordinate transformation and movement planning, the equipment is designed and completed finally with satisfy conclusion.
基金the financial support of the National Natural Science Foundation of China(Grant No.51975307).
文摘The internal force antagonism(IFA)problem is one of the most important issues limiting the applications and popularization of redundant parallel robots in industry.Redundant cable-driven parallel robots(RCDPRs)and redundant rigid parallel robots(RRPRs)behave very differently in this problem.To clarify the essence of IFA,this study first analyzes the causes and influencing factors of IFA.Next,an evaluation index for IFA is proposed,and its calculating algorithm is developed.Then,three graphical analysis methods based on this index are proposed.Finally,the performance of RCDPRs and RRPRs in IFA under three configurations are analyzed.Results show that RRPRs produce IFA in nearly all the areas of the workspace,whereas RCDPRs produce IFA in only some areas of the workspace,and the IFA in RCDPRs is milder than that RRPRs.Thus,RCDPRs more fault-tolerant and easier to control and thus more conducive for industrial application and popularization than RRPRs.Furthermore,the proposed analysis methods can be used for the configuration optimization design of RCDPRs.
基金Supported by National Natural Science Foundation of China(Grant No.61773060).
文摘Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.