期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Numerical simulation study on penetration performance of depleted Uranium(DU)alloy fragments 被引量:5
1
作者 Fu-lin Zhu Yang Chen Gui-li Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期50-55,共6页
Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the... Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the application of fragment killing elements.Therefore,regarding the performance of the depleted uranium alloy to penetrate the target plate,further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy.To study the difference in penetration performance between depleted uranium alloy and tungsten alloy fragments,firstly,a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model.Then,taking the cylindrical fragment penetration target as the research object,the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy fragment and tungsten alloy fragment were compared and analyzed,by using finite element software ANSYS/LS-DYNA and Lagrange algorithm.Lastly,the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research.The results show that in the penetration process of the DU and tungsten alloy fragments,the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance.Under the same conditions,the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture,and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment. 展开更多
关键词 Depleted uranium alloy Constitutive model Adiabatic shear Penetration performance Numerical simulation
下载PDF
Experimental study on simulation test instrument and its penetration performance of soil infiltration clogging
2
作者 LU Jinzhi YANG Zhishuang LI Pengfei 《Global Geology》 2016年第3期182-186,共5页
The three-dimensional seepage simulation test device for siltation dam foundation soil is a multifunctional penetration instrument which is designed for the simulation of infiltration clogging,seepage damage,and dam s... The three-dimensional seepage simulation test device for siltation dam foundation soil is a multifunctional penetration instrument which is designed for the simulation of infiltration clogging,seepage damage,and dam seepage and so on. This device is different from the traditional instruments for the rock and soil permeability. In order to verify the practicability of the device,the authors collected the soil samples for laboratory penetration test,observed the seepage damage phenomenon,and obtained the dynamic change curve of permeability coefficient and isopotential map of water pressure. At the same time,the Geostudio finite element software is used to simulate the steady seepage of the test device. By contrast of the isopotential maps between simulation and actual water pressures,it is found that they are approximately the same. It is proved that the test data of the device is scientific and reliable,reaching the results of the test and design purposes. The instrument can be used in many aspects of experimental study on soil seepage. 展开更多
关键词 SEEPAGE numerical simulation penetration performance soil infiltration clogging
下载PDF
Investigation on the penetration of jacketed rods with striking velocities of 0.9-3.3 km/s into semi-infinite targets 被引量:4
3
作者 Kui Tang Jin-xiang Wang +1 位作者 Hai-ping Song Nan Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期476-489,共14页
In this study, a combined experimental, numerical and theoretical investigation is conducted on the penetration of semi-infinite 4340 steel targets by a homogeneous 93 W rod and two types of jacketed rods with strikin... In this study, a combined experimental, numerical and theoretical investigation is conducted on the penetration of semi-infinite 4340 steel targets by a homogeneous 93 W rod and two types of jacketed rods with striking velocities of 0.9-3.3 km/s. The results show that the jacketed rods produced typical“co-erosion” damage at all test velocities, except for the 93 W/1060 Al jacketed rod, which switched from an early “bi-erosion” damage to later “co-erosion” damage at a striking velocity of 936 m/s. However, the homogeneous 93 W rod always forms a large mushroom head during the penetration process. The damage mechanisms of these two types of jacketed rods differ for striking velocities of 0.9-2.0 km/s, but this difference gradually decreases with increased striking velocity. For velocities of 2.0-3.3 km/s, all three types of projectiles exhibit typical hydrodynamic penetration characteristics, and the damage mechanisms of the two types of jacketed rods are almost identical. For the same initial kinetic energy, the penetration performance of the jacketed rods is distinctly superior to that of the homogeneous 93 W rods.Compared with jacket density, jacket strength shows a more significant influence on the damage mechanism and penetration performance of the jacketed rod. Finally, an existing theoretical prediction model of the penetration depth of jacketed rods on semi-infinite targets in the co-erosion mode is modified. It transpires that-in terms of penetration depth-the modified theoretical model is in good agreement with the experimental and numerical observations for 93 W/TC4 and 93 W/1060 Al jacketed rods penetrating semi-infinite 4340 steel targets. 展开更多
关键词 Jacketed rod Semi-infinite target Damage mechanism Penetration performance
下载PDF
Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions 被引量:11
4
作者 高栗 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期290-295,共6页
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu... Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one. 展开更多
关键词 tunnel boring machine(TBM) performance prediction rate of penetration(ROP) support vector machine(SVM) partial least squares(PLS)
下载PDF
Penetration performance of W/Cu double-layer shaped charge liners 被引量:2
5
作者 Wen-Jian Dong Jin-Xu Liu +3 位作者 Xing-Wang Cheng Shu-Kui Li Qing-He Zou Wen-Qi Guo 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期184-191,共8页
Two kinds of W/Cu double-layer shaped charge liner(SCL) were prepared by chemical vapor deposition(CVD) combined with electroforming technique: A SCL with W inner layer and Cu outer layer, B SCL with Cu inner lay... Two kinds of W/Cu double-layer shaped charge liner(SCL) were prepared by chemical vapor deposition(CVD) combined with electroforming technique: A SCL with W inner layer and Cu outer layer, B SCL with Cu inner layer and W outer layer. The penetration properties of A and B SCLs were researched. The results show that the two SCLs can form continuous jet and the tip velocities of A and B jets are 7.4 and 6.3 km s^(-1), respectively. The kinetic energy density(5.3 9 1011 J m-3) of A jet tip increases by 194.4 %compared with that(1.8 9 1011 J m-3) of B jet tip. B jet,however, exhibits deeper penetration depth at the same experimental conditions. The chemical component and microstructure of the area nearby the ballistic perforation were researched. Component analysis shows that both the jets are formed only from inner layer metal. Microstructure analysis shows that martensite and intermetallic form around ballistic perforation penetrated by A SCL due to the intensive interaction between W jet and steel target. The two kinds of newly formed ultrahard phases also hinder the jet from penetrating target further. As a result of relatively alleviative interaction between Cu jet and target, only solid solution rather than ultrahard phases forms around ballistic perforation penetrated by B SCL. 展开更多
关键词 Shaped charge liner Jet Penetration performance Chemical vapor deposition Electroforming technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部