期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An artificial immune and incremental learning inspired novel framework for performance pattern identification of complex electromechanical systems 被引量:1
1
作者 WANG RongXi GAO Xu +3 位作者 GAO JianMin GAO ZhiYong CHEN Kun PENG CaiYuan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第1期1-13,共13页
Performance pattern identification is the key basis for fault detection and condition prediction,which plays a major role in ensuring safety and reliability in complex electromechanical systems(CESs).However,there are... Performance pattern identification is the key basis for fault detection and condition prediction,which plays a major role in ensuring safety and reliability in complex electromechanical systems(CESs).However,there are a few problems related to the automatic and adaptive updating of an identification model.Aiming to solve the problem of identification model updating,a novel framework for performance pattern identification of the CESs based on the artificial immune systems and incremental learning is proposed in this paper to classify real-time monitoring data into different performance patterns.First,an unsupervised clustering technique is used to construct an initial identification model.Second,the artificial immune and outlier detection algorithms are applied to identify abnormal data and determine the type of immune response.Third,incremental learning is employed to trace the dynamic changes of patterns,and operations such as pattern insertion,pattern removal,and pattern revision are designed to realize automatic and adaptive updates of an identification model.The effectiveness of the proposed framework is demonstrated through experiments with the benchmark and actual pattern identification applications.As an unsupervised and self-adapting approach,the proposed framework inherits the preponderances of the conventional methods but overcomes some of their drawbacks because the retraining process is not required in perceiving the pattern changes.Therefore,this method can be flexibly and efficiently used for performance pattern identification of the CESs.Moreover,the proposed method provides a foundation for fault detection and condition prediction,and can be used in other engineering applications. 展开更多
关键词 performance pattern identification complex electromechanical systems artificial immune incremental learning data classification
原文传递
The quantitative evaluation of application of hyperspectral data based on multi-parameters joint optimization 被引量:1
2
作者 LI Na HUANG Ping +1 位作者 ZHAO HuiJie JIA GuoRui 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第11期2249-2255,共7页
In order to evaluate the mineral identification of the hyperspectral data and make a trade-off of the imaging system parameters,a quantitative evaluation approach based on the multi-parameters joint optimization is pr... In order to evaluate the mineral identification of the hyperspectral data and make a trade-off of the imaging system parameters,a quantitative evaluation approach based on the multi-parameters joint optimization is proposed for the hyperspectral remote sensing.In the proposed approach,the mineral identification is defined as the number of the minerals identified and the key imaging parameters employed include ground sample distance(GSD)and spectral resolution(SR).Certain limitations are found among parameters that are used for analyzing the imaging processes.The constraints include the industrial manufacturing level,application requirements and the quantitative relationship among the GSD,the SR and the signal-to-noise ratio(SNR).Regression analysis is used to investigate the quantitative relationship between the mineral identification and the key imaging system parameters.Then,an optimization model for the trade-off study is established by combining the regression equation with the constraints.The airborne hyperspectral image collected by Hymap is applied to evaluate the performance of the proposed approach.The experimental results reveal that the approach can achieve the evaluation of the mineral identification and the trade-off of key imaging system parameters.The error of the prediction is within one kind of mineral. 展开更多
关键词 mineral identification performance quantitative evaluation multi-parameters joint optimization ground sample distance spectral resolution signal.to-noise ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部