SiC composite membrane was fabricated by mixing with SiC and ZnO powder. This mixture was pressed and sintered at 1,300 ℃ under air condition. This sintered ZnO-SiC membrane was dip-coated by silica sol and followed ...SiC composite membrane was fabricated by mixing with SiC and ZnO powder. This mixture was pressed and sintered at 1,300 ℃ under air condition. This sintered ZnO-SiC membrane was dip-coated by silica sol and followed by heat-treatment. This membrane was characterized by XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy) and BET (Brunauer-Emmett-Teller) instruments. Hydrogen permeation test was conducted at 0.1 MPa pressure and also variation of temperatures. The obtained value of heat-treated membrane after dip-coating at 298 K was obtained as 1.61 × 10-6 mol/(m2·s·Pa).展开更多
Based on the chemical composition of traditional hot-stamped steel(e.g.,22MnB5 and 30MnB5),Nb and V microalloying elements are added into 30MnB5 steel to meet the requirements of ultra-high strength,excellent ductilit...Based on the chemical composition of traditional hot-stamped steel(e.g.,22MnB5 and 30MnB5),Nb and V microalloying elements are added into 30MnB5 steel to meet the requirements of ultra-high strength,excellent ductility and potent resistance to hydrogen embrittlement(HE)at the same time.The influence of hot-stamped steel on HE was studied by conducting a hydrogen permeation method and pre-charged hydrogen slow strain rate test.Meanwhile,the experimental steel microstructures and corresponding fracture surfaces are observed and analyzed to characterize HE behavior.The results show that a finer microstructure,a lower apparent diffusion coefficient of hydrogen and a smaller percentage of strength and plasticity reduction are obtained due to the addition of the vanadium element into hot-stamped steel.Compared to the V free experimental steel,the steel with 0.14 wt.% V has a large number of dispersive precipitates and more grain boundary areas,which makes hydrogen atoms dispersedly distribute.展开更多
文摘SiC composite membrane was fabricated by mixing with SiC and ZnO powder. This mixture was pressed and sintered at 1,300 ℃ under air condition. This sintered ZnO-SiC membrane was dip-coated by silica sol and followed by heat-treatment. This membrane was characterized by XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy) and BET (Brunauer-Emmett-Teller) instruments. Hydrogen permeation test was conducted at 0.1 MPa pressure and also variation of temperatures. The obtained value of heat-treated membrane after dip-coating at 298 K was obtained as 1.61 × 10-6 mol/(m2·s·Pa).
基金the National Natural Science Foundation of China(Grant No.51574028)the Development Program of Thirteenth Five-year Plan Period(Grant No.2017 YFB0304400)for Grant and financial support.
文摘Based on the chemical composition of traditional hot-stamped steel(e.g.,22MnB5 and 30MnB5),Nb and V microalloying elements are added into 30MnB5 steel to meet the requirements of ultra-high strength,excellent ductility and potent resistance to hydrogen embrittlement(HE)at the same time.The influence of hot-stamped steel on HE was studied by conducting a hydrogen permeation method and pre-charged hydrogen slow strain rate test.Meanwhile,the experimental steel microstructures and corresponding fracture surfaces are observed and analyzed to characterize HE behavior.The results show that a finer microstructure,a lower apparent diffusion coefficient of hydrogen and a smaller percentage of strength and plasticity reduction are obtained due to the addition of the vanadium element into hot-stamped steel.Compared to the V free experimental steel,the steel with 0.14 wt.% V has a large number of dispersive precipitates and more grain boundary areas,which makes hydrogen atoms dispersedly distribute.