Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with th...Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with them. The petrographic and lithogeochemical study showed that the dolerites of the Kéniéba kimberlitic fields are of tholeiitic nature and of the E-MORB (Enriched-Mid Ocean Ridge Basalt) type. This reflects an enrichment over time, compared to the Birimian dolerites of the volcano-sedimentary greenstone belt of Toumodi, in central C?te d’Ivoire. Furthermore, these dolerites are enriched in SiO2, TiO2, Zr and poor in Fe2O3, MgO. These dolerites would have formed in a late to post-orogenic intracontinental context during the breakup of Gondwana. Structurally, Kéniéba dolerites are often associated with kimberlite pipes, fractures and large deep structures identified using aeromagnetic images. Taking into account the fact that kimberlites do not outcrop in the Kéniéba region, the geochemical study coupled with the interpretation of aeromagnetic data proved to be very useful for the search for pipes.展开更多
Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,d...Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.展开更多
This research investigates and reports on the petrology and geochemical characteristics of crystalline basement rocks in Ora-Ekiti,Southwestern Nigeria.Exhaustive geological investigation reveals migmatite,banded gnei...This research investigates and reports on the petrology and geochemical characteristics of crystalline basement rocks in Ora-Ekiti,Southwestern Nigeria.Exhaustive geological investigation reveals migmatite,banded gneiss,granite gneiss and biotite gneiss underlie the area.In reducing order of abundance,petrographic examination reveals that migmatite contains quartz,muscovite and opaque minerals.Banded geniuses contain quartz,biotite,plagioclase,and opaque minerals.Granite geniuses contain quartz,plagioclase,biotite,microcline and opaque;while biotite geniuses contain biotite,plagioclase,opaque minerals,and quartz.Silica contents in migmatite(69.50%-72.66%;ca.71.23%),banded gneiss(71.66%-77.1%;ca.75.23%),biotite gneiss(72.32%-76.18%;ca.73.83%)and granite gneiss(69.82%-73.15%;ca.71.95%)indicate the rocks are siliceous.High alumina contents in migmatite(12.18%),banded gneiss(10.28%),biotite gneiss(11.46%)and granite gneiss(9.97%)are comparable to similar rocks in the basement complex.All the rocks show Ba,Sr and Rb enrichment.Harker diagrams of Al_(2)O_(3)versus SiO_(2)and CaO versus SiO_(2)show negative trends while Na_(2)O versus SiO_(2),K_(2)O versus SiO_(2)and TiO_(2)versus SiO_(2)plots showed positive trends.This variation probably depicts extensive crystal fractionation in the magmatic systems that produced the rocks prior to metamorphism or partial melting of the precursor rock.SiO_(2)versus(Na_(2)O+K_(2)O)classifies the rocks as granite to granodiorite.The rocks are high K-calc-alkaline and calc-alkalic on SiO_(2)-K_(2)O plot.This shows the rocks are potassic meaning that they are formed from a potassium-rich source.The plot of Al_(2)O_(3)/(Na_(2)O+K_(2)O)versus Al_(2)O_(3)/(CaO+Na_(2)O+K_(2)O)reveals the crystalline rocks are orogenic and originated from granitoid with meta luminous affinity.The rocks consist of gneisses of no economic minerals,but the petrology reveals them as common rocks typical of metamorphic terrains and geochemical features of the rocks reveal they are felsic and of granitic composition.展开更多
Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of ...Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.展开更多
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain...Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water.展开更多
There are a large number of Mesozoic intrusive and volcanic rocks in western Liaoning of China,which is an ideal place to study the Mesozoic Paleo-Pacific subduction processes,and lithospheric destruc-tion of North Ch...There are a large number of Mesozoic intrusive and volcanic rocks in western Liaoning of China,which is an ideal place to study the Mesozoic Paleo-Pacific subduction processes,and lithospheric destruc-tion of North China Craton.Detailed petrographic,zircon U-Pb dating and geochemical studies of the Early Jurassic granites in Huashan pluton,Xingcheng,western Liaoning,indicate that the Early Jurassic granites were formed at 184-174 Ma,mainly composed of syenite and monzogranite.The geochemical characteristics show high contents of SiO_(2),Al_(2)O_(3)and Na_(2)O+K_(2)O,low contents of Fe_(2)O_(3)and MgO,enrichment in LREEs and LILEs,and depletion in HREEs and HFSEs,and have a high content of Sr and low contents of Y and Yb,with weak negative Eu anomalies and slightly negative anomalies of Ce,indicating that they are a set of intermediate-acidic adakitic granites in high-K calc-alkaline series.All the facts significantly suggest that the Early Jurassic adakitic granites were formed at the active continental margin in the context of Paleo-Pacific plate subduction.展开更多
文摘Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with them. The petrographic and lithogeochemical study showed that the dolerites of the Kéniéba kimberlitic fields are of tholeiitic nature and of the E-MORB (Enriched-Mid Ocean Ridge Basalt) type. This reflects an enrichment over time, compared to the Birimian dolerites of the volcano-sedimentary greenstone belt of Toumodi, in central C?te d’Ivoire. Furthermore, these dolerites are enriched in SiO2, TiO2, Zr and poor in Fe2O3, MgO. These dolerites would have formed in a late to post-orogenic intracontinental context during the breakup of Gondwana. Structurally, Kéniéba dolerites are often associated with kimberlite pipes, fractures and large deep structures identified using aeromagnetic images. Taking into account the fact that kimberlites do not outcrop in the Kéniéba region, the geochemical study coupled with the interpretation of aeromagnetic data proved to be very useful for the search for pipes.
文摘Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.
文摘This research investigates and reports on the petrology and geochemical characteristics of crystalline basement rocks in Ora-Ekiti,Southwestern Nigeria.Exhaustive geological investigation reveals migmatite,banded gneiss,granite gneiss and biotite gneiss underlie the area.In reducing order of abundance,petrographic examination reveals that migmatite contains quartz,muscovite and opaque minerals.Banded geniuses contain quartz,biotite,plagioclase,and opaque minerals.Granite geniuses contain quartz,plagioclase,biotite,microcline and opaque;while biotite geniuses contain biotite,plagioclase,opaque minerals,and quartz.Silica contents in migmatite(69.50%-72.66%;ca.71.23%),banded gneiss(71.66%-77.1%;ca.75.23%),biotite gneiss(72.32%-76.18%;ca.73.83%)and granite gneiss(69.82%-73.15%;ca.71.95%)indicate the rocks are siliceous.High alumina contents in migmatite(12.18%),banded gneiss(10.28%),biotite gneiss(11.46%)and granite gneiss(9.97%)are comparable to similar rocks in the basement complex.All the rocks show Ba,Sr and Rb enrichment.Harker diagrams of Al_(2)O_(3)versus SiO_(2)and CaO versus SiO_(2)show negative trends while Na_(2)O versus SiO_(2),K_(2)O versus SiO_(2)and TiO_(2)versus SiO_(2)plots showed positive trends.This variation probably depicts extensive crystal fractionation in the magmatic systems that produced the rocks prior to metamorphism or partial melting of the precursor rock.SiO_(2)versus(Na_(2)O+K_(2)O)classifies the rocks as granite to granodiorite.The rocks are high K-calc-alkaline and calc-alkalic on SiO_(2)-K_(2)O plot.This shows the rocks are potassic meaning that they are formed from a potassium-rich source.The plot of Al_(2)O_(3)/(Na_(2)O+K_(2)O)versus Al_(2)O_(3)/(CaO+Na_(2)O+K_(2)O)reveals the crystalline rocks are orogenic and originated from granitoid with meta luminous affinity.The rocks consist of gneisses of no economic minerals,but the petrology reveals them as common rocks typical of metamorphic terrains and geochemical features of the rocks reveal they are felsic and of granitic composition.
基金financially supported by the National Natural Science Foundation of China(Grant No.42272209)the Natural Science Basic Research Program of Shaanxi(Grant No.2021JLM-12)the CNPC Major Science and Technology Project(Grant No.2021DJ3805)。
文摘Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.
文摘Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water.
基金Supported by the National Key R&D Program of China(No.2016YFC0666108-02).
文摘There are a large number of Mesozoic intrusive and volcanic rocks in western Liaoning of China,which is an ideal place to study the Mesozoic Paleo-Pacific subduction processes,and lithospheric destruc-tion of North China Craton.Detailed petrographic,zircon U-Pb dating and geochemical studies of the Early Jurassic granites in Huashan pluton,Xingcheng,western Liaoning,indicate that the Early Jurassic granites were formed at 184-174 Ma,mainly composed of syenite and monzogranite.The geochemical characteristics show high contents of SiO_(2),Al_(2)O_(3)and Na_(2)O+K_(2)O,low contents of Fe_(2)O_(3)and MgO,enrichment in LREEs and LILEs,and depletion in HREEs and HFSEs,and have a high content of Sr and low contents of Y and Yb,with weak negative Eu anomalies and slightly negative anomalies of Ce,indicating that they are a set of intermediate-acidic adakitic granites in high-K calc-alkaline series.All the facts significantly suggest that the Early Jurassic adakitic granites were formed at the active continental margin in the context of Paleo-Pacific plate subduction.