A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introdu...A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.展开更多
Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward tra...Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.展开更多
An asymmetric heating method for fusion splicing of 1 060-XP silica fiber (1 060F) and phosphate glass fiber (PGF) using an electric arc splicer has been proposed. Double joints with the lowest splice loss of 0.6 ...An asymmetric heating method for fusion splicing of 1 060-XP silica fiber (1 060F) and phosphate glass fiber (PGF) using an electric arc splicer has been proposed. Double joints with the lowest splice loss of 0.6 dB and good bending-resist strength between 1 060 F and PGF has been obtained. The main reasons affecting fiber splice loss and strength have been analyzed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61205047)
文摘A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Guangdong Natural Science Foundation under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the’Cross and Cooperative’Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.
基金Funded by the Guangdong Science and Technology Program (No.2005A10602001)the Guangzhou Science and Technology Program (No.2006Z2-D0161)the Program for New Century Excellent Talents (No.NCET-04-0821)
文摘An asymmetric heating method for fusion splicing of 1 060-XP silica fiber (1 060F) and phosphate glass fiber (PGF) using an electric arc splicer has been proposed. Double joints with the lowest splice loss of 0.6 dB and good bending-resist strength between 1 060 F and PGF has been obtained. The main reasons affecting fiber splice loss and strength have been analyzed.