Dissolved hydrogen is harmful to mechanical properties of refinedhypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and thehydrogen-detecting instrument HYSCAN II, the relationshi...Dissolved hydrogen is harmful to mechanical properties of refinedhypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and thehydrogen-detecting instrument HYSCAN II, the relationship between the initial hydrogen content inthe melt and the refinement effect on the casting of hypereutectic aluminum-silicon alloy wasinvestigated. The experimental results show that the cooling rate, the hydrogen content and thegrain refinement effect are three interactive factors. When the hydrogen content is above 0.20mL/100 g and the cooling rate is lower than that in 50 mm-thick step, hydrogen dissolved in thealloy melt influences the grain refinement effect. With increasing the cooling rate, the criticalhydrogen content increases too. It is expected that much hydrogen in the melt make the netinterfacial energy larger than or equal to zero, resulting in the shielding of the particles AlPduring solidification and that the critical gas content is closely related to the critical radius ofembryo bubbles.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.50071028)the Natural Science Foundation of Shandong Province in China (No. Z2001F02)
文摘Dissolved hydrogen is harmful to mechanical properties of refinedhypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and thehydrogen-detecting instrument HYSCAN II, the relationship between the initial hydrogen content inthe melt and the refinement effect on the casting of hypereutectic aluminum-silicon alloy wasinvestigated. The experimental results show that the cooling rate, the hydrogen content and thegrain refinement effect are three interactive factors. When the hydrogen content is above 0.20mL/100 g and the cooling rate is lower than that in 50 mm-thick step, hydrogen dissolved in thealloy melt influences the grain refinement effect. With increasing the cooling rate, the criticalhydrogen content increases too. It is expected that much hydrogen in the melt make the netinterfacial energy larger than or equal to zero, resulting in the shielding of the particles AlPduring solidification and that the critical gas content is closely related to the critical radius ofembryo bubbles.