Suspended particulate matter (SPM) collected in the Changjiang (Yangtze River) estuary in June 2006 was separated into five fractions via water elutriation: clay-very fme silt (〈8 μm), fine silt (8-16 μm),...Suspended particulate matter (SPM) collected in the Changjiang (Yangtze River) estuary in June 2006 was separated into five fractions via water elutriation: clay-very fme silt (〈8 μm), fine silt (8-16 μm), medium silt (16--32 μm), coarse silt (32~53 μm) and sand (〉63 μm). The SPM and fractionated particles were sequentially analyzed by a modified SEDEX sequential extraction method to obtain six species of phosphorus: exchangeable or loosely-sorbed P, organic P, Fe-bound P, authigenic P, detrital P and refractory P. The results indicated that all particulate phosphorus species except for detrital P were negatively correlated to particle size; a high detrital P content was found in coarse silt and very coarse silt. From the inside of the river mouth to the gate of the fiver mouth, organic P, Fe-bound P and refractory P in the suspended particles decreased and a higher amount of exchangeable P appeared around the gate of the fiver mouth. From the gate of the river mouth to the sea, exchangeable P and organic P in suspended panicles increased distinctly. The total particulate P flux into the estuary from the Changjiang River was about 45.45×10^8μmol/s during sampling. Of this, about 8.27×10^8μmol/s was associated with the "truly suspended" fraction. The bio-available particulate P flux was about 13.58×10^8μmol/s. Of this, about 4.24 ×10^8μmol/s w as transported by "truly suspended" particles.展开更多
A variety of environmental problems have been observed in the Changjiang River Estuary and adjacent coastal area, including eutrophication, harmful algal blooms(HABs), and hypoxia in recent decades. Application of s...A variety of environmental problems have been observed in the Changjiang River Estuary and adjacent coastal area, including eutrophication, harmful algal blooms(HABs), and hypoxia in recent decades. Application of sedimentary biogenic element indicators on the study of paleoenvironment can reconstruct environmental evolution history of waters. Two 210Pb-dated cores were collected from the Changjiang River Estuary(S3) and adjacent coastal area(Z13), and total organic carbon(TOC), total nitrogen(TN), biogenic silicon(BSi), total phosphorus(TP) and phosphorus(P) species were analyzed. Three stages of environmental changes are deduced by the nutrient sedimentary records. First, nutrient concentration increased rapidly since the 1950 s, which attributed to agriculture development and overused chemical fertilizers. Second, nutrient concentration kept high and primary production began to promote during the 1960 s to 1980 s, while diatom abundance and proportion began to decline since the 1970 s, accompanied by reduced 23 Si O- concentration and flux from the river. Third, due to several dams and bridges constructed, river runoff and coastal hydrodynamic conditions reduced to a certain extent since the 1990 s, which aggravated the unbalance in nutrient structure. Multi-nutrient proxies in sediment can reflect the natural environm-ental changes as well as influence of human activities.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.40976044,40920164004 and 30490232)the National Basic Research Program of China (973 Program) (Nos.2002CB12405 and 2005CB422305)
文摘Suspended particulate matter (SPM) collected in the Changjiang (Yangtze River) estuary in June 2006 was separated into five fractions via water elutriation: clay-very fme silt (〈8 μm), fine silt (8-16 μm), medium silt (16--32 μm), coarse silt (32~53 μm) and sand (〉63 μm). The SPM and fractionated particles were sequentially analyzed by a modified SEDEX sequential extraction method to obtain six species of phosphorus: exchangeable or loosely-sorbed P, organic P, Fe-bound P, authigenic P, detrital P and refractory P. The results indicated that all particulate phosphorus species except for detrital P were negatively correlated to particle size; a high detrital P content was found in coarse silt and very coarse silt. From the inside of the river mouth to the gate of the fiver mouth, organic P, Fe-bound P and refractory P in the suspended particles decreased and a higher amount of exchangeable P appeared around the gate of the fiver mouth. From the gate of the river mouth to the sea, exchangeable P and organic P in suspended panicles increased distinctly. The total particulate P flux into the estuary from the Changjiang River was about 45.45×10^8μmol/s during sampling. Of this, about 8.27×10^8μmol/s was associated with the "truly suspended" fraction. The bio-available particulate P flux was about 13.58×10^8μmol/s. Of this, about 4.24 ×10^8μmol/s w as transported by "truly suspended" particles.
基金The Environmental Protection Public Welfare Project of China under contract No.201309008the Environmental Protection Research Project of Zhejiang Province under contract No.200830
文摘A variety of environmental problems have been observed in the Changjiang River Estuary and adjacent coastal area, including eutrophication, harmful algal blooms(HABs), and hypoxia in recent decades. Application of sedimentary biogenic element indicators on the study of paleoenvironment can reconstruct environmental evolution history of waters. Two 210Pb-dated cores were collected from the Changjiang River Estuary(S3) and adjacent coastal area(Z13), and total organic carbon(TOC), total nitrogen(TN), biogenic silicon(BSi), total phosphorus(TP) and phosphorus(P) species were analyzed. Three stages of environmental changes are deduced by the nutrient sedimentary records. First, nutrient concentration increased rapidly since the 1950 s, which attributed to agriculture development and overused chemical fertilizers. Second, nutrient concentration kept high and primary production began to promote during the 1960 s to 1980 s, while diatom abundance and proportion began to decline since the 1970 s, accompanied by reduced 23 Si O- concentration and flux from the river. Third, due to several dams and bridges constructed, river runoff and coastal hydrodynamic conditions reduced to a certain extent since the 1990 s, which aggravated the unbalance in nutrient structure. Multi-nutrient proxies in sediment can reflect the natural environm-ental changes as well as influence of human activities.