期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Preparation and Microstructure of Al-pillared Interlayered Montmorillonite 被引量:2
1
作者 曹明礼 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第4期13-16,共4页
Al-pillared interlayered montmorillonite (Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions.The microstructure ... Al-pillared interlayered montmorillonite (Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions.The microstructure of the materials was studied by an X-ray powder diffractometer and a Fourier transform infrared (FTIR) spectrometer.The results indicated that the basal spacing [d(001) value] of the materials was increased significantly to 1.9194 nm relative to Na-montmorillonite (1.2182 nm).After calcined for 2 h at 300℃,the basal spacing was stabilized at 1.8394 nm and the layered structure of the materials was not destroyed.Thermal analysis was conducted by a thermal gravimetry and differential thermal analysis (TG-DTA) instrument,it showed that Al-PILM lost physically adsorbed water below 230.6℃ and water formed by dehydroxylation of the pillars at around 497.1℃, with a peak of the phase transformation at 903.0℃. 展开更多
关键词 Al-pillared interlayered montmorillonite pillaring solution PREPARATION MICROSTRUCTURE
下载PDF
Synthesis and Characterization of Al-Cr-Pillared Montmorillonite with High Thermal Stability and Adsorption Capacity* 被引量:1
2
作者 曹明礼 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第1期51-53,共3页
Al-Cr-pillared montmorillonite was synthesized by using bentonite and Al-Cr pillaring solutions as starting materials.The basal spacing and specific surface areas of the materials were significantly increased relative... Al-Cr-pillared montmorillonite was synthesized by using bentonite and Al-Cr pillaring solutions as starting materials.The basal spacing and specific surface areas of the materials were significantly increased relative to those of untreated clays.When the Al/Cr molar ratio(R) was 0.10,the d(001) value and specific surface area of pillared montmorillonite were 1.9194 nm and 165.7 m2 g -1,respectively.Thermal stability of the materials was determined using calcined tests and X-ray diffraction (XRD) analysis.The materials formed at different R(0.05;0.10;0.15;0.25) exhibit a high thermal stability at 300℃,especially at initial R=0.10,the basal interlayer spacing of materials is stabilized at 1.7313 nm after calcined at 500℃ for 2 h.Adsorption behavior of the materials was studied by adsorption experiments.The results show that the Al-Cr-pillared montmorillonites exhibit much stronger adsorption capacity on Cr 6+ in aqueous solution than untreated clays do. 展开更多
关键词 Al-Cr-pillared montmorillonite pillaring solution SYNTHESIS CHARACTERIZATION ADSORPTION
下载PDF
Preparation and Properties of Pillared Montmorillonite by Polyhydroxyl-aluminum-manganese Cations
3
作者 曹明礼 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期43-46,共4页
Al-Mn-pillared montmorillonite(AMPM) was prepared by using the artificial Na-montmoril-lonite from the Qingfengshan bentonite mine as starting materials mixed with Al-Mn pillaring solutions at different Al/Mn molar ra... Al-Mn-pillared montmorillonite(AMPM) was prepared by using the artificial Na-montmoril-lonite from the Qingfengshan bentonite mine as starting materials mixed with Al-Mn pillaring solutions at different Al/Mn molar ratios (R). The basal spacing and specific surface area of the materials were increased significantly compared with untreated clays. When R = 0.5, the d (001) value and specific surface area of pillared montmoril-lonite were 1.8987 ran and 146.01 m2 g-1, respectively. The thermal stability was determined using calcined tests , X-ray diffraction ( XRD ) analysis, thermal gravimetry and differential thermal analysis (TG - DTA). The materials formed at initial R = 0.5 exhibited a high stability, the basal interlayer spacing was stabilized at 1.7859 nm after calcined for 2 h at 300℃. The adsorption behavior of the materials was studied by adsorption experiments. The results show the AMPM and calcined Al-Mn-pillared montmorillonite ( CAMPM) exhibit a strong capacity of adsorbing the Zn(Ⅱ) in aqueous solution at pH 10.0. 展开更多
关键词 Al-Mn-pillared montmorillonite pillaring solution pofyhydroxyl-aluminum-manganese cations preparation properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部