A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosp...A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin.展开更多
The disease types, symptom characteristics, pathogenesis and ecological control technology of hedgerow commonly used in landscape greening in Nanjing, Zhenjiang, Changzhou, Wuxi and Suzhou were systematically studied....The disease types, symptom characteristics, pathogenesis and ecological control technology of hedgerow commonly used in landscape greening in Nanjing, Zhenjiang, Changzhou, Wuxi and Suzhou were systematically studied. The results showed that there were 10 kinds of common diseases of flowers and shrubs in landscape greening in five cities of southern Jiangsu. Among them, 8 were caused by deuteromycotina and 2 were caused by subphylum basidiomycetes. It was pointed out that the disease regularity was directly related to the pathogenic bacteria, temperature and humidity, microclimate and hedgerow growth. For the first time, the ecological control method of hedgerow disease which focused on ecological health maintenance was put forward.展开更多
Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data...Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm, Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation, rill cannot happen within the top 50 m, while in a year with large and intensive precipitation, rill can be formed starting even at 15 m from the top of the slope.展开更多
基金supported by the International S&T Cooperation Program of Shanghai,China(20390731200)the Major Science and Technology Program for Water Pollution Control and Treatment,China(2017ZX07205)。
文摘A field experiment was carried out to evaluate the effects of drip fertigation combined with plant hedgerows on nitrogen and phosphorus runoff losses in intensive pear orchards in the Tai Lake Basin.Nitrogen and phosphorus runoff over a whole year were measured by using successional runoff water collection devices.The four experimental treatments were conventional fertilization(CK),drip fertigation(DF),conventional fertilization combined with plant hedgerows(C+H),and drip fertigation combined with plant hedgerows(D+H).The results from one year of continuous monitoring showed a significant positive correlation between precipitation and surface runoff discharge.Surface runoff discharge under the treatments without plant hedgerows totaled 15.86%of precipitation,while surface runoff discharge under the treatments with plant hedgerows totaled 12.82%of precipitation.Plant hedgerows reduced the number of runoff events and the amount of surface runoff.Precipitation is the main driving force for the loss of nitrogen and phosphorus in surface runoff,and fertilization is an important factor affecting the losses of nitrogen and phosphorus.In CK,approximately 7.36%of nitrogen and 2.63%of phosphorus from fertilization entered the surface water through runoff.Drip fertigation reduced the accumulation of nitrogen and phosphorus in the surface soil and lowered the runoff loss concentrations of total nitrogen(TN)and total phosphorus(TP).Drip fertigation combined with plant hedgerows significantly reduced the overall TN and TP losses by 45.38 and 36.81%,respectively,in comparison to the CK totals.Drip fertigation increased the vertical migration depth of nitrogen and phosphorus nutrients and reduced the accumulation of nitrogen and phosphorus in the surface soil,which increased the pear yield.The promotion of drip fertigation combined with plant hedgerows will greatly reduce the losses of nitrogen and phosphorus to runoff and maintain the high fruit yields in the intensive orchards of the Tai Lake Basin.
文摘The disease types, symptom characteristics, pathogenesis and ecological control technology of hedgerow commonly used in landscape greening in Nanjing, Zhenjiang, Changzhou, Wuxi and Suzhou were systematically studied. The results showed that there were 10 kinds of common diseases of flowers and shrubs in landscape greening in five cities of southern Jiangsu. Among them, 8 were caused by deuteromycotina and 2 were caused by subphylum basidiomycetes. It was pointed out that the disease regularity was directly related to the pathogenic bacteria, temperature and humidity, microclimate and hedgerow growth. For the first time, the ecological control method of hedgerow disease which focused on ecological health maintenance was put forward.
基金National Basic Research Program of China, No.2007CB407207Knowledge Innovation Project of Institute of Geographic Sciences and Natural Resources Research,CAS,No.CXIOG-A04-10the support from CAS through its "One Hundred Talent" program
文摘Characteristics of soil erosion change along a long slope in the gentle hilly areas in black soil region in Northeast China are discussed. A simplified slope model based on segments was used to analyze the runoff data and soil erosion data observed between 2003 and 2004 over 10 field plots with different slope length in Heshan Farm, Heilongjiang Province. We found that soil erosion rate over long slopes in the black soil region changed alternatively along the slope and creates alternative zones of intensive erosion and week erosion.The exact place of each zone is different for different rainfall conditions. In a year with less and mild precipitation, rill cannot happen within the top 50 m, while in a year with large and intensive precipitation, rill can be formed starting even at 15 m from the top of the slope.