期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Rotor performance enhancement by alternating current dielectric barrier discharge plasma actuation
1
作者 赵光银 王畅 +2 位作者 杨永东 李国强 史喆羽 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期120-127,共8页
An experimental system was established to explore the plasma flow control effect for helicopter rotors in hover mode.With the plasma actuator applied at the leading edge of the rotor blades,alternating current dielect... An experimental system was established to explore the plasma flow control effect for helicopter rotors in hover mode.With the plasma actuator applied at the leading edge of the rotor blades,alternating current dielectric barrier discharge(AC-DBD) plasma actuation was generated by a sinusoidal AC high-voltage generator.By direct force measurement,the influence of actuation parameters on the aerodynamic performance of the rotor was investigated at a tip Reynolds number of 1.7 × 105.AC-DBD actuation can delay the blade stall to more than 3° with a 20%increase of about in the thrust coefficient at the post-stall pitch.At a constant motor power driving the rotor,AC-DBD actuation could reduce the rotor’s torque at the stalled pitch and increase the rotational speed of the rotor.Also,AC-DBD actuation could maintain a relatively high hover efficiency of the rotor at large collective pitches.In a wide range of actuation parameters,AC-DBD plasma actuation could improve the rotor’s aerodynamic performance at large blade pitches.High-speed photography of the tuft motion on the blade’s upper surface showed that AC-DBD plasma actuation could promote the reattachment of the blade’s separation flow. 展开更多
关键词 ROTOR flow control plasma actuator dielectric barrier discharge force measurement
下载PDF
Experimental study on surface arc plasma actuation-based hypersonic boundary layer transition flow control 被引量:2
2
作者 Hesen YANG Hua LIANG +5 位作者 Shanguang GUO Yanhao LUO Mengxiao TANG Chuanbiao ZHANG Yun WU Yinghong LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第9期108-116,共9页
Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface... Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed. 展开更多
关键词 plasma actuation flow control surface arc discharge hypersonic boundary layer transition experimental study
下载PDF
Large Eddy Simulation of the Effects of Plasma Actuation Strength on Film Cooling Efficiency 被引量:2
3
作者 LI Guozhan CHEN Fu +1 位作者 LI Linxi SONG Yanping 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第11期1101-1109,共9页
In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical resea... In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical research, the plasma actuator is placed downstream of the trailing edge of the film cooling hole and a phenomenological model is employed to provide the electric field generated by it, resulting in the body forces. Our results show that as the plasma actuation strength grows larger, under the downward effect of the plasma actuation, the jet trajectory near the cooling hole stays closer to the wall and the recirculation region observably reduces in size. Meanwhile, the momentum injection effect of the plasma actuation also actively alters the distributions of the velocity components downstream of the cooling hole. Consequently, the influence of the plasma actuation strength on the Reynolds stress downstream of the cooling hole is remarkable. Furthermore, the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, with the increase of the strength of the plasma actuation, the coolant core stays closer to the wall and tends to split into two distinct regions. So the centerline film cooling efficiency is enhanced, and it is increased by 55% at most when the plasma actuation strength is 10. 展开更多
关键词 large eddy simulation plasma actuation strength film cooling flow characteristic
下载PDF
Flow Control over a Conical Forebody by Periodic Pulsed Plasma Actuation 被引量:1
4
作者 郑博睿 G高超 +2 位作者 李一滨 刘锋 罗时钧 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第4期350-356,共7页
The flow control mechanism of plasma actuators with periodic pulsed discharge to control the bi-stable vortices over a cone-cylinder is investigated. The actuators are installed on the leeward surface near the apex of... The flow control mechanism of plasma actuators with periodic pulsed discharge to control the bi-stable vortices over a cone-cylinder is investigated. The actuators are installed on the leeward surface near the apex of a cone which has a semi-apex angle of 10°. The effectiveness of the plasma actuation under different free-stream velocities and angles of attack is analyzed. The pressure distributions over the conical forebody are measured by both steady and dynamic pressure transducers. The transient dynamic pressure distribution tends to gradually become steady as the free-stream velocity increases, that is, the pulsed actuation approximates a continuous one. Furthermore, the flow control effectiveness becomes less noticeable as the free-stream velocity or the angle of attack increases under certain controlling electrical parameters. 展开更多
关键词 flow control conical forebody periodic pulsed actuation plasma actuator
下载PDF
Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure 被引量:1
5
作者 Wei-long Wang Jun Li +3 位作者 Hui-min Song Di Jin Min Jia Yun Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期320-325,共6页
Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distribut... Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s. 展开更多
关键词 radio frequency discharge temperature distribution induced flow velocity plasma aerodynamic actuation
原文传递
Electric and plasma characteristics of RF discharge plasma actuation under varying pressures 被引量:1
6
作者 宋慧敏 贾敏 +2 位作者 金迪 崔巍 吴云 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期262-269,共8页
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, a... The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase. 展开更多
关键词 plasma aerodynamic actuation optical emission spectrum plasma flow control RF discharge
原文传递
Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
7
作者 方子淇 宗豪华 +2 位作者 吴云 梁华 苏志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th... To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned. 展开更多
关键词 plasma actuator flow control drag reduction AIRFOIL
下载PDF
Low Speed Axial Compressor Stall Margin Improvement by Unsteady Plasma Actuation 被引量:4
8
作者 LI Gang XU Yanji +3 位作者 YANG Lingyuan DU Wei ZHU Junqiang NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第2期114-119,共6页
This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed a... This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor.The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow.Experiments are carried out on a low speed axial compressor with a single rotor.The static pressure is measured at both the rotor inlet and outlet.The flow coefficient and pressure rise coefficient are calculated.Then the characteristic line is acquired to show the overall performance of the compressor.With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min – 2400 r/min. 展开更多
关键词 axial compressor plasma actuation stall margin improvement
原文传递
Metamodeling-based parametric optimization of DBD plasma actuation to suppress flow separation over a wind turbine airfoil model 被引量:1
9
作者 Ramsankar Veerakumar Vishal Raul +3 位作者 Yang Liu Xiaodong Wang Leifur Leifsson Hui Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期260-274,共15页
While dielectric-barrier-discharge(DBD)based plasma actuation systems have been successfully demonstrated to suppress massive flow separation over wind turbine blades to reduce the transient aerodynamic loadings actin... While dielectric-barrier-discharge(DBD)based plasma actuation systems have been successfully demonstrated to suppress massive flow separation over wind turbine blades to reduce the transient aerodynamic loadings acting on the turbine blades,it is still a non-trivial task to establish a best combination of various operating parameters for a DBD plasma actuation system to achieve the optimized flow control effectiveness.In the present study,a regression Kriging based metamodeling technique is developed to optimize the operating parameters of a DBD plasma actuation system for suppressing deep stall over the surface of a wind turbine blade section/airfoil model.The data points were experimentally obtained by embedding a nanosecond-pulsed DBD(NS-DBD)plasma actuator at the leading edge of the airfoil model.The applied voltage and frequency for the NS-DBD plasma actuation were used as the design variables to demonstrate the optimization procedure.The highest possible lift coefficient of the turbine airfoil model at deep stalled angles of attack(i.e.,α?=?22°and 24°)were selected as the objective function for the optimization.It was found that,while the metamodeling-based procedure could accurately predict the objective function within the bounds of the design variables with an uncertainty~?2%,a global accuracy level of~?97%was achieved within the whole design space. 展开更多
关键词 Wind turbine aerodynamics Dielectric-barrier-discharge(DBD)plasma actuation Active flow control Wind turbine airfoil stall suppression
原文传递
Dynamic stall control over a rotor airfoil based on AC DBD plasma actuation
10
作者 Guangyin Zhao Yong Huang +2 位作者 Yongdong Yang Guoqiang Li Hesen Yang 《Advances in Aerodynamics》 2021年第1期153-165,共13页
At present,the control capability of dielectric barrier discharge(DBD)plasma actuation covers the flow velocity range of helicopter’s retreating blades,so it is necessary to extend it to the dynamic stall control of ... At present,the control capability of dielectric barrier discharge(DBD)plasma actuation covers the flow velocity range of helicopter’s retreating blades,so it is necessary to extend it to the dynamic stall control of rotor airfoils.A DBD plasma actuator was adopted to control the dynamic stall of an oscillating CRA309 airfoil in this paper.The effectiveness of alternating current(AC)DBD plasma actuation on reducing the area of lift hysteresis loop of the oscillating airfoil was verified through pressure measurements at a Reynolds number of 5.2×10^(5).The influence of actuation parameters on the airfoil’s lift and moment coefficients was studied.Both steady and unsteady actuation could effectively reduce the hysteresis loop area of the lift coefficients.The flow control effect of dynamic stall was strongly dependent on the history of angle of attack.Compared with the steady actuation,unsteady actuation had more obvious advantages in dynamic stall control,with reducing the area of lift hysteresis loop by more than 30%.The effects of plasma actuation on the airfoil’s flow field at both upward and downward stages were discussed at last. 展开更多
关键词 plasma actuation Flow separation Dynamic stall HYSTERESIS Dielectric barrier discharge
原文传递
Experimental investigation of nanosecond discharge plasma aerodynamic actuation 被引量:2
11
作者 吴云 李应红 +2 位作者 贾敏 梁华 宋慧敏 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期401-405,共5页
In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3IIu) rotational and vibrational temperatures are around 430 K and 0.24 e... In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3IIu) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between tile first negative system and the second positive system of N2, as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s. 展开更多
关键词 plasma aerodynamic actuation nanosecond pulsed discharge plasma flow control opti- cal emission spectra
原文传递
Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation 被引量:2
12
作者 宋慧敏 李应红 +2 位作者 张乔根 贾敏 吴云 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第5期608-611,共4页
A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode ... A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a 'starting vortex' and a quasi-steady 'near-wall jet'. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency. 展开更多
关键词 plasma aerodynamic actuation sliding discharge plasma flow control
下载PDF
Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators 被引量:1
13
作者 Sohrab Gholamhosein POURYOUSSEFI Masoud MIRZAEI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第5期415-424,共10页
The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuat... The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuators in quiescent air. The parameters affecting the operation of unsteady plasma actuators were experimentally measured and compared with the ones for steady actuators. The effects of excitation frequency and duty cycle on the induced flow pattern properties were studied by means of hot-wire anemometers, and the smoke visualization method was also used. It was observed that the current and the mean induced velocity linearly increase with increasing duty cycle while they are not sensitive to excitation frequency. Furthermore, with increasing excitation frequency, the magnitude of vortices shedding from the actuator decreases while their frequency increases. Nevertheless, when the excitation frequency grows beyond a certain level, the induced flow downstream of the actuator behaves as a steady flow. However, the results for steady actuators show that by increasing the applied voltage and carrier frequency, the velocity of the induced flow first increases and then decreases with actuator saturation and the onset of the emission of streaky glow discharge. 展开更多
关键词 unsteady plasma actuator excitation frequency duty cycle induced flowpattern frequency response sequence
下载PDF
Effects of Plasma Aerodynamic Actuation on Corner Separation in a Highly Loaded Compressor Cascade 被引量:1
14
作者 王学德 赵小虎 +2 位作者 李应红 吴云 赵勤 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第3期244-250,共7页
This paper reports experimental results on the effects of plasma aerodynamic actua- tion (PAA) on corner separation control in a highly loaded, low speed, linear compressor cascade. Total pressure loss coefficient d... This paper reports experimental results on the effects of plasma aerodynamic actua- tion (PAA) on corner separation control in a highly loaded, low speed, linear compressor cascade. Total pressure loss coefficient distribution was adopted to evaluate the corner separation control effect in wind tunnel experiments. Results of pressure measurements and particle image velocime- try (PIV) show that the control effect of pitch-wise PAA on the endwall is much better than that of stream-wise PAA on the suction surface. When both the pitch-wise PAA on the endwall and stream-wise PAA on the suction surface are turned on simultaneously, the control effect is the best among all three PAA types. The mechanisms of nanosecond discharge and microsecond discharge PAA are different in corner separation control. The control effect of microsecond discharge PAA turns out better with the increase of discharge voltage and duty cycle. Compared with microsec- ond discharge PAA, nanosecond discharge PAA is more effective in preventing corner separation when the freestream velocity increases. Frequency is one of the most important parameters in plasma flow control. The optimum excitation frequency of microsecond discharge PAA is 500 Hz, which is different from the frequency corresponding to the case with a Strouhal number of unity. 展开更多
关键词 plasma aerodynamic actuation corner separation COMPRESSOR CASCADE
下载PDF
Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation
15
作者 陈康 梁华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期278-286,共9页
Plasma flow control(PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle(UAV) by nano... Plasma flow control(PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle(UAV) by nanosecond discharge plasma aerodynamic actuation(NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge(30 A) is much bigger than that for millisecond discharge(0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation(MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. 展开更多
关键词 nanosecond discharge plasma aerodynamic actuation UAV SEPARATION
原文传递
Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control
16
作者 孙敏 杨波 +1 位作者 彭天祥 雷明凯 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第6期680-685,共6页
Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA00... Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle. 展开更多
关键词 unsteady plasma aerodynamic actuation DBD duty cycle stall separation control electron deposition opposite momentum transfer suppression
下载PDF
Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
17
作者 徐泽阳 武斌 +2 位作者 高超 王娜 贾天昊 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期193-203,共11页
To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil,the flow control by a microsecond-pulsed dielectric barrier discharge(MP-DBD) actuator on the dynamic stall of a periodicall... To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil,the flow control by a microsecond-pulsed dielectric barrier discharge(MP-DBD) actuator on the dynamic stall of a periodically pitching NACA0012 airfoil was investigated experimentally.Unsteady pressure measurements with high temporal accuracy were employed in this study,and the unsteady characteristics of the boundary layer were investigated by wavelet packet analysis and the moving root mean square method based on the acquired pressure.The experimental Mach number was 0.2,and the chord-based Reynolds number was 870 000.The dimensionless actuation frequencies F+ were chosen to be 0.5,1,2,and 3,respectively.For the light dynamic regime,the MP-DBD plasma actuator plays the role of suppressing flow separation from the trial edge and accelerating the flow reattachment due to the high-momentum freestream flow being entrained into the boundary layer.Meanwhile,actuation effects were promoted with the increasing dimensionless actuation frequency F+.The control effects of the deep dynamic stall were to delay the onset and reduce the strength of the dynamic stall vortex due to the accumulating vorticity near the leading edge being removed by the induced coherent vortex structures.The laminar fluctuation and Kelvin-Helmholtz(K-H) instabilities of transition and relaminarization were also mitigated by the MP-DBD actuation,and the alleviated K-H rolls led to the delay of the transition onset and earlier laminar reattachment,which improved the hysteresis effect of the dynamic stall.For the controlled cases of F+=2,and F+=3,the laminar fluctuation was replaced by relatively low frequency band disturbances corresponding to the harmonic responses of the MP-DBD actuation frequency. 展开更多
关键词 microsecond-pulsed plasma actuator dielectric barrier discharge flow control dynamic stall wind turbine wind tunnel experiment
下载PDF
Turbulent boundary layer control with DBD plasma actuators
18
作者 李跃强 武斌 +3 位作者 高超 郑海波 王玉帅 严日华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期184-194,共11页
The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the ... The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the DBD plasma control technology and hot-wire anemometer velocity measurements,a novel convenient method of local drag reduction(DR)measurement is proposed by measuring the single-point velocity within the linear region of the viscous sublayer.We analyze the premise of using the method,and the maximum effective measurement range of-73.1%<DR<42.2%is obtained according to the experimental environment in this work.The local drag decreases downstream of the center of two adjacent upper electrodes and increases downstream of the upper electrodes.The magnitude of the local DR increases with increasing voltage and decreases as it moves away from the actuators.For the spanwise position in between,the streamwise distribution of the local DR is very dependent on the voltage.The variable-interval time-average detection results reveal that all bursting intensities are reduced compared to the baseline,and the amount of reduction is comparable to the absolute values of the local DR.Compared with previous results,we infer that the control mechanism is that many meandering streaks are combined together into single stabilized streaks. 展开更多
关键词 turbulent boundary layer control DBD plasma actuators drag reduction measurement
下载PDF
Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
19
作者 郑博睿 张倩 +2 位作者 赵太飞 宋国正 陈全龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期172-178,共7页
The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is desig... The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies. 展开更多
关键词 plasma flow control plasma synthetic jet actuator pressure measurements numerical simulations
下载PDF
Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode 被引量:1
20
作者 R.KHOSHKHOO A.JAHANGIRIAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第9期933-942,共10页
A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a diel... A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter- pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000. 展开更多
关键词 flow control pulse plasma actuation unsteady flow low Reynolds number numerical simulation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部