An integrated poly(dirnethylsiloxane) (PDMS) microchip with two sharpened stretching tips for convenient sample injecting, running buffer refreshing and channel cleaning has been presented. The sample was directly...An integrated poly(dirnethylsiloxane) (PDMS) microchip with two sharpened stretching tips for convenient sample injecting, running buffer refreshing and channel cleaning has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and injection cross channel. The operation of running buffer refreshing or channel cleaning was simplified by vacuuming one end of the tip and placing the other tip into the solution vial. Therefore, this fabrication method can be easily applied to most analytical laboratories economically without soft lithography and plasma bonding equipments. The attractive performance of the novel PDMS microchips has been demonstrated by using laser-induced fluorescence detection for separation of proteins. The addition of 0.04% Brij 35 in 0.04 mol/L phosphate buffer (pH 7.0) can reduce the adhesion of proteins in multienzyme tablet and make separation more easily. The electroosmotic flow (EOF) exhibits pH-independence in the range of 3-1 1 in dynamic modified microchannel.展开更多
An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental anal...An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.展开更多
An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicat...An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.展开更多
This paper focuses on the effects of the PSt content of polystyrene (PSt)-poly (dimethylsiloxane) (PDMS) interpenetrateing network (IPN) polymer membranes, on the pervaporation (PV) characteristics during the removal ...This paper focuses on the effects of the PSt content of polystyrene (PSt)-poly (dimethylsiloxane) (PDMS) interpenetrateing network (IPN) polymer membranes, on the pervaporation (PV) characteristics during the removal of benzene from an aqueous solution of dilute benzene. When an aqueous solution of 0.05wt% benzene was permeated through the PSt-PDMS IPN membranes, they showed high benzene/water selectivity. Both the permeability and the benzene/water selectivity of the membranes were enhanced with increasing PSt content in the PSt-PDMS IPN membrane. The physicochemical mechanism of permeation and separation through the PSt-PDMS IPN membranes during PV is also discussed. The best normalized permeation rate, separation factor for benzene selectivity, and PV separation index of the PSt-PDMS IPN membrane were 1.27 × 10-6 kgm (m2hr)-1, 3293, and 41821, respectively. These PV characteristics are discussed from the viewpoint of the chemical and physical structure of the PSt-PDMS IPN membranes.展开更多
Block copolymers with different backbone compositions have been prepared by the condensation of dimethylamino terminated poly(dimethylsiloxane) (PDMS) and hydroquinone terminated poly(phthalazinone ether nitrile...Block copolymers with different backbone compositions have been prepared by the condensation of dimethylamino terminated poly(dimethylsiloxane) (PDMS) and hydroquinone terminated poly(phthalazinone ether nitrile) (PPEN) in the presence of chlorobenzcne/N-methyl pyrrolidone (NMP) as solvents. The products were characterized by FTIR, ^1H NMR and gel permeation chromatography. Differential scanning calorimetry analysis indicated that the block copolymers showed separated microphase.展开更多
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi...Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains are directly obtained from a priori probability P-alpha beta. Here the differing statistical weight matrices for the Si-O and O...The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains are directly obtained from a priori probability P-alpha beta. Here the differing statistical weight matrices for the Si-O and O-Si bonds are considered in calculating the configuration partition function. In the Bahar's model, as the same statistical weight matrices for the Si-O and O-Si bonds are adopted, there exists a large deviation of a priori probability P-alpha beta between the theory and the molecular dynamics (MD) simulation. Our model gives satisfactory agreement with experiment on the mean-square unperturbed end-to-end distance, the mean-square dipole moment and its temperature dependence, and the molar cyclization equilibrium constants for dimethylsiloxane oligomers. This new rotational isomeric state approach can be widely applied to other chains; such as -CH2-C[(CH2)(m)H](2)- and -O-Si[(CH2)(m)H](2) for arbitrary m.展开更多
Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard s...Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard segment of TPU and α,ω-dihydroxy-[poly(propyleneoxide)-poly (dimethylsiloxane)-poly(propyleneoxide)] (α,ω-dihydroxy-(PPO-PDMS-PPO)) was used to form soft segment of TPU, where the molar ratio of the –N=C=O/OH was 1.02 and the hard segment weight percentage was 30%. A series of TPUs were characterized by fourier transform infrared spectroscopy (FT-IR). The investigation of triblock oligomer’s PPO molecular weight impact on the derived TPU’s mechanical properties, thermal performance, surface water repellency and morphology performance was carried by Instron material tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angles (WCA), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDX) and wide angle X-ray diffraction (WAXD), respectively. FT-IR confirmed α,ω-dihydroxy-(PPO-PDMS-PPO) well cooperating into urethane structure and analyzed hydrogen bonding between N-H group with hard segment C=O group and N-H group with soft segment C-O-C group. DSC and WAXD results showed α,ω-dihydroxy-(PPO-PDMS-PPO) segments crystallization. SEM-EDX results showed that the presence of a spherulitic morphology, which arose from the crystallization of the PPO segments. The thermal properties measured by TGA and DSC were slightly affected by molecular weight of PPO and microphase separation. The weight loss of TPUs started between 294°C and 300°C, and Tg was in the range of -70°C to -107°C. TPU copolymers’ surface hydrophobicity property was excellent with WCA range of 95°?to 112°. TPU-3 with 1000 molecular weight PPO has the optimized mechanical properties with tensile strength 16.4 MPa and the modulus at 100% elongation 6.2 MPa and elongation 398%.展开更多
Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite l...Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr...The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.展开更多
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor ...This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor can convert external pressure or mechanical deformation into electrical signal to detect pressure and strain changes based on the coupling of triboelectrification and electrostatic induction.To enhance the performance of the pressure sensor,it consists of sub-500 nm resolution on the surface of elastic poly(dimethylsiloxane) sensitive layer and an indium tin oxide electrode thin film.When the pressure applied on the nanostructures layer,triboelectrostatic charges are induced.In the experiment,it measures up to sensitivity of 0.8 V/kPa at frequency of 5 Hz.This study results in potential applications such as wearable smart devices and skin-attachable diagnostics sensing systems.展开更多
Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affect...Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.展开更多
Oxidative stress and inflammation are key drivers of osteoarthritis(OA)pathogenesis and disease progression.Herein we report the synthesis of poly(p-coumaric)nanoparticles(PCA NPs)from p-courmaic acid(p-CA),a naturall...Oxidative stress and inflammation are key drivers of osteoarthritis(OA)pathogenesis and disease progression.Herein we report the synthesis of poly(p-coumaric)nanoparticles(PCA NPs)from p-courmaic acid(p-CA),a naturally occurring phytophenolic acid,to be a multifunctional and drug-free therapeutic for temporomandibular joint osteoarthritis(TMJOA).Compared to hyaluronic acid(HA)that is clinically given as viscosupplementation,PCA NPs exhibited long-term efficacy,superior anti-oxidant and anti-inflammatory properties in alleviating TMJOA and repairing the TMJ cartilage and subchondral bone in a rat model of TMJOA.Notably,TMJ repair mediated by PCA NPs could be attributed to their anti-oxidant and anti-inflammatory properties in enhancing cell proliferation and matrix synthesis,while reducing inflammation,oxidative stress,matrix degradation,and chondrocyte ferroptosis.Overall,our study demonstrates a multifunctional nanoparticle,synthesized from natural p-coumaric acid,that is stable and possess potent antioxidant,anti-inflammatory properties and ferroptosis inhibition,beneficial for treatment of TMJOA.展开更多
The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective...The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.展开更多
Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its ...Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its supportive role,PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos.This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy,and the rationale would present an engaging topic in the field of anticancer research.Therefore,this editorial provides an overview of the mechanisms determining cancer cell fate,emphasizing the central role of PAR.It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.展开更多
文摘An integrated poly(dirnethylsiloxane) (PDMS) microchip with two sharpened stretching tips for convenient sample injecting, running buffer refreshing and channel cleaning has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and injection cross channel. The operation of running buffer refreshing or channel cleaning was simplified by vacuuming one end of the tip and placing the other tip into the solution vial. Therefore, this fabrication method can be easily applied to most analytical laboratories economically without soft lithography and plasma bonding equipments. The attractive performance of the novel PDMS microchips has been demonstrated by using laser-induced fluorescence detection for separation of proteins. The addition of 0.04% Brij 35 in 0.04 mol/L phosphate buffer (pH 7.0) can reduce the adhesion of proteins in multienzyme tablet and make separation more easily. The electroosmotic flow (EOF) exhibits pH-independence in the range of 3-1 1 in dynamic modified microchannel.
基金Supported by National 985 Project of China (No.985XK-015).
文摘An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.
文摘An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.
文摘This paper focuses on the effects of the PSt content of polystyrene (PSt)-poly (dimethylsiloxane) (PDMS) interpenetrateing network (IPN) polymer membranes, on the pervaporation (PV) characteristics during the removal of benzene from an aqueous solution of dilute benzene. When an aqueous solution of 0.05wt% benzene was permeated through the PSt-PDMS IPN membranes, they showed high benzene/water selectivity. Both the permeability and the benzene/water selectivity of the membranes were enhanced with increasing PSt content in the PSt-PDMS IPN membrane. The physicochemical mechanism of permeation and separation through the PSt-PDMS IPN membranes during PV is also discussed. The best normalized permeation rate, separation factor for benzene selectivity, and PV separation index of the PSt-PDMS IPN membrane were 1.27 × 10-6 kgm (m2hr)-1, 3293, and 41821, respectively. These PV characteristics are discussed from the viewpoint of the chemical and physical structure of the PSt-PDMS IPN membranes.
文摘Block copolymers with different backbone compositions have been prepared by the condensation of dimethylamino terminated poly(dimethylsiloxane) (PDMS) and hydroquinone terminated poly(phthalazinone ether nitrile) (PPEN) in the presence of chlorobenzcne/N-methyl pyrrolidone (NMP) as solvents. The products were characterized by FTIR, ^1H NMR and gel permeation chromatography. Differential scanning calorimetry analysis indicated that the block copolymers showed separated microphase.
基金supported by National Natural Science Foundation of China(Grant No.U1930113),ChinaNational Natural Science Foundation of China(52072036)
文摘Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金This research was financially supported by National Natural Science Foundation of China and the National Basic Research Project"Macromolecular Condensed State"from STCC.
文摘The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains are directly obtained from a priori probability P-alpha beta. Here the differing statistical weight matrices for the Si-O and O-Si bonds are considered in calculating the configuration partition function. In the Bahar's model, as the same statistical weight matrices for the Si-O and O-Si bonds are adopted, there exists a large deviation of a priori probability P-alpha beta between the theory and the molecular dynamics (MD) simulation. Our model gives satisfactory agreement with experiment on the mean-square unperturbed end-to-end distance, the mean-square dipole moment and its temperature dependence, and the molar cyclization equilibrium constants for dimethylsiloxane oligomers. This new rotational isomeric state approach can be widely applied to other chains; such as -CH2-C[(CH2)(m)H](2)- and -O-Si[(CH2)(m)H](2) for arbitrary m.
文摘Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard segment of TPU and α,ω-dihydroxy-[poly(propyleneoxide)-poly (dimethylsiloxane)-poly(propyleneoxide)] (α,ω-dihydroxy-(PPO-PDMS-PPO)) was used to form soft segment of TPU, where the molar ratio of the –N=C=O/OH was 1.02 and the hard segment weight percentage was 30%. A series of TPUs were characterized by fourier transform infrared spectroscopy (FT-IR). The investigation of triblock oligomer’s PPO molecular weight impact on the derived TPU’s mechanical properties, thermal performance, surface water repellency and morphology performance was carried by Instron material tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angles (WCA), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDX) and wide angle X-ray diffraction (WAXD), respectively. FT-IR confirmed α,ω-dihydroxy-(PPO-PDMS-PPO) well cooperating into urethane structure and analyzed hydrogen bonding between N-H group with hard segment C=O group and N-H group with soft segment C-O-C group. DSC and WAXD results showed α,ω-dihydroxy-(PPO-PDMS-PPO) segments crystallization. SEM-EDX results showed that the presence of a spherulitic morphology, which arose from the crystallization of the PPO segments. The thermal properties measured by TGA and DSC were slightly affected by molecular weight of PPO and microphase separation. The weight loss of TPUs started between 294°C and 300°C, and Tg was in the range of -70°C to -107°C. TPU copolymers’ surface hydrophobicity property was excellent with WCA range of 95°?to 112°. TPU-3 with 1000 molecular weight PPO has the optimized mechanical properties with tensile strength 16.4 MPa and the modulus at 100% elongation 6.2 MPa and elongation 398%.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(no.2022R1A2C1006743)。
文摘Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金funding from the Natural Science Foundation of Hubei Province,China(Grant No.2022CFA031)supported by the Natural Science Foundation of China(Grant No.22309056).
文摘The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
基金supported by the National Natural Science Foundation of China (NSFC)(Grant number 51703227,C0025053,61605211,61504147,and 61775213)Sichuan Science and Technology Program (Grant number 2019YJ0014)the Instrument Development of Chinese Academy of Sciences,The National R&D Program of China (Grant number 2017YFC0804900),.
文摘This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor can convert external pressure or mechanical deformation into electrical signal to detect pressure and strain changes based on the coupling of triboelectrification and electrostatic induction.To enhance the performance of the pressure sensor,it consists of sub-500 nm resolution on the surface of elastic poly(dimethylsiloxane) sensitive layer and an indium tin oxide electrode thin film.When the pressure applied on the nanostructures layer,triboelectrostatic charges are induced.In the experiment,it measures up to sensitivity of 0.8 V/kPa at frequency of 5 Hz.This study results in potential applications such as wearable smart devices and skin-attachable diagnostics sensing systems.
基金supported by the National Natural Science Foundation of China(22008053,52002111)the Natural Science Foundation of Hebei Province(B2021208061,B2022208006,B2023208014)the Beijing Natural Science Foundation(Z200011).
文摘Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82170960 and No.52173150)the Science and Technology Program of Guangzhou,China(Grant No.202206080009)+1 种基金Guangzhou Science and Technology Program City-University Joint Funding Project(Grant No.2023A03J0001)China Postdoctoral Science Foundation(Grant No.2022M723670).
文摘Oxidative stress and inflammation are key drivers of osteoarthritis(OA)pathogenesis and disease progression.Herein we report the synthesis of poly(p-coumaric)nanoparticles(PCA NPs)from p-courmaic acid(p-CA),a naturally occurring phytophenolic acid,to be a multifunctional and drug-free therapeutic for temporomandibular joint osteoarthritis(TMJOA).Compared to hyaluronic acid(HA)that is clinically given as viscosupplementation,PCA NPs exhibited long-term efficacy,superior anti-oxidant and anti-inflammatory properties in alleviating TMJOA and repairing the TMJ cartilage and subchondral bone in a rat model of TMJOA.Notably,TMJ repair mediated by PCA NPs could be attributed to their anti-oxidant and anti-inflammatory properties in enhancing cell proliferation and matrix synthesis,while reducing inflammation,oxidative stress,matrix degradation,and chondrocyte ferroptosis.Overall,our study demonstrates a multifunctional nanoparticle,synthesized from natural p-coumaric acid,that is stable and possess potent antioxidant,anti-inflammatory properties and ferroptosis inhibition,beneficial for treatment of TMJOA.
基金supported by National Natural Science Foundation of China(Grant No.22209012).
文摘The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.
文摘Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its supportive role,PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos.This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy,and the rationale would present an engaging topic in the field of anticancer research.Therefore,this editorial provides an overview of the mechanisms determining cancer cell fate,emphasizing the central role of PAR.It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.