Thermosetting resin matrix is the key component of advaneed wave-tra nsparent composites,where low dielectric constant,excellent processability,high thermal stability,as well as good bonding ability are required for r...Thermosetting resin matrix is the key component of advaneed wave-tra nsparent composites,where low dielectric constant,excellent processability,high thermal stability,as well as good bonding ability are required for resins.Herein,we prepared a series of phenylethynyl terminated polyimide(PI)resins by grafting amine-functi onalized hyperbra nched polysiloxane(HBPSi)to PI chains during the in situ polymerization.The effects of HBPSi on the processability of oligomers,molecular packing,thermal stability,dielectric property and bonding ability to reinforce Kevlar fibers of the cured PI/HBPSi composite resins have been examined in detail.The dielectric constants of the cured composite resins were greatly reduced from 3.29 to 2.19 without compromising its processability and thermal stability.Meanwhile,the 10 wt%HBPSi-containing PI resin demonstrated better bonding ability to reinforce fibers with the in terfacial shear strength(IFSS)of 37.64 MPa,compared with that of neat PI-6 matrix(27.34 MPa),and better adhesion to metal with the lap shear strength of 10.48 MPa,50%higher than that of neat resin PI-6(6.98 MPa).These resultant PI/HBPSi composite resins exhibit excellent comprehensive properties,indicating their great potential as low-dielectric constant resin matrix in radar radome.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51903038,21774019 and 21975040)the Program of Shanghai Academic Research Leader(No.18XD1400100)+1 种基金the Scientific Research Innovation Plan of Shanghai Education Commission(No.2019-01-07-00-03-E00001)the Fundamental Research Funds for the Central Universities and Graduate Innovation Fund of Donghua University(No.CUSF-DH-D-2019009).
文摘Thermosetting resin matrix is the key component of advaneed wave-tra nsparent composites,where low dielectric constant,excellent processability,high thermal stability,as well as good bonding ability are required for resins.Herein,we prepared a series of phenylethynyl terminated polyimide(PI)resins by grafting amine-functi onalized hyperbra nched polysiloxane(HBPSi)to PI chains during the in situ polymerization.The effects of HBPSi on the processability of oligomers,molecular packing,thermal stability,dielectric property and bonding ability to reinforce Kevlar fibers of the cured PI/HBPSi composite resins have been examined in detail.The dielectric constants of the cured composite resins were greatly reduced from 3.29 to 2.19 without compromising its processability and thermal stability.Meanwhile,the 10 wt%HBPSi-containing PI resin demonstrated better bonding ability to reinforce fibers with the in terfacial shear strength(IFSS)of 37.64 MPa,compared with that of neat PI-6 matrix(27.34 MPa),and better adhesion to metal with the lap shear strength of 10.48 MPa,50%higher than that of neat resin PI-6(6.98 MPa).These resultant PI/HBPSi composite resins exhibit excellent comprehensive properties,indicating their great potential as low-dielectric constant resin matrix in radar radome.