Maximally exploiting the active sites of iridium catalysts is essential for building low-cost proton exchange membrane(PEM)electrolyzers for green H_(2)production.Herein,we report a novel microdrop-confined fusion/bla...Maximally exploiting the active sites of iridium catalysts is essential for building low-cost proton exchange membrane(PEM)electrolyzers for green H_(2)production.Herein,we report a novel microdrop-confined fusion/blasting(MCFB)strategy for fabricating porous hollow IrO_(1-x)microspheres(IrO_(1-x)-PHM)by introducing explosive gas mediators from a NaNO_(3)/glucose mixture.Moreover,the developed MCFB strategy is demonstrated to be general for synthesizing a series of Ir-based composites,including Ir-Cu,Ir-Ru,Ir-Pt,Ir-Rh,Ir-Pd,and Ir-Cu-Pd and other noble metals such as Rh,Ru,and Pt.The hollow structures can be regulated using different organics with NaNO_(3).The assembled PEM electrolyzer with IrO_(1-x)-PHM as the anode catalyst(0.5 mg/cm^(2))displays an impressive polarization voltage of 1.593and 1.726 V at current densities of 1 and 2 A/cm^(2),respectively,outperforming commercial IrO_(x)catalysts and most of the ever-reported iridium catalysts with such low catalyst loading.More importantly,the breakdown of the polarization loss indicates that the improved performance is due to the facilitated mass transport induced by the hollowness.This study offers a versatile platform for fabricating efficient Irbased catalysts for PEM electrolyzers and beyond.展开更多
基金supported by the National Natural Science Foundation of China(22375004,22175163,and 21801003)Anhui Provincial Education Department(2023AH020014,2023AH010030,gxgnfx2021132)+5 种基金the University Synergy Innovation Program of Anhui Province(GXXT-2022-007)Science and Technology Program of Wuhu(2022yf60)the Natural Science Foundation of Anhui Province(2208085UD04)the Plan for Anhui Major Provincial Science&Technology Project(2021d05050006 and 202103a05020015)the Anhui Development and Reform Commission(AHZDCYCX-LSDT2023-07 and AHZDCYCX-LSDT2023-08)Anhui Polytechnic University(Youth Talent Training Program(2021))。
文摘Maximally exploiting the active sites of iridium catalysts is essential for building low-cost proton exchange membrane(PEM)electrolyzers for green H_(2)production.Herein,we report a novel microdrop-confined fusion/blasting(MCFB)strategy for fabricating porous hollow IrO_(1-x)microspheres(IrO_(1-x)-PHM)by introducing explosive gas mediators from a NaNO_(3)/glucose mixture.Moreover,the developed MCFB strategy is demonstrated to be general for synthesizing a series of Ir-based composites,including Ir-Cu,Ir-Ru,Ir-Pt,Ir-Rh,Ir-Pd,and Ir-Cu-Pd and other noble metals such as Rh,Ru,and Pt.The hollow structures can be regulated using different organics with NaNO_(3).The assembled PEM electrolyzer with IrO_(1-x)-PHM as the anode catalyst(0.5 mg/cm^(2))displays an impressive polarization voltage of 1.593and 1.726 V at current densities of 1 and 2 A/cm^(2),respectively,outperforming commercial IrO_(x)catalysts and most of the ever-reported iridium catalysts with such low catalyst loading.More importantly,the breakdown of the polarization loss indicates that the improved performance is due to the facilitated mass transport induced by the hollowness.This study offers a versatile platform for fabricating efficient Irbased catalysts for PEM electrolyzers and beyond.