In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ an...In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ and under strain rates of 0.001-1 s^-1. The flow stress curves show that the DRX is responsible for flow softening during hot compression. The effects of temperature and strain rate on the strain and stress corresponding to peak point (εp and σp) of flow curve were analyzed individually. It is realized that, they increase with strain rate and decrease with temperature. The relationship between Zener-Hollomon parameter (Z) and εp was investigated and the equation of εp=4.3×10^-4^0.14 was proposed. The strain for the maximum rate of DRX (εmax) was determined under different deformation conditions. Therefore, it is realized that it increases with Z parameter and vise versa. On the basis of obtained results, the equation of εmax=9.5 × 10^-4Z0.12 was proposed.展开更多
文摘In this research, the dynamic recrystallization (DRX) behavior of an as-cast precipitation hardenable (PH) stainless steel was investigated by conducting hot compression tests at temperatures between 950-1150℃ and under strain rates of 0.001-1 s^-1. The flow stress curves show that the DRX is responsible for flow softening during hot compression. The effects of temperature and strain rate on the strain and stress corresponding to peak point (εp and σp) of flow curve were analyzed individually. It is realized that, they increase with strain rate and decrease with temperature. The relationship between Zener-Hollomon parameter (Z) and εp was investigated and the equation of εp=4.3×10^-4^0.14 was proposed. The strain for the maximum rate of DRX (εmax) was determined under different deformation conditions. Therefore, it is realized that it increases with Z parameter and vise versa. On the basis of obtained results, the equation of εmax=9.5 × 10^-4Z0.12 was proposed.