To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irr...To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 〈100 mm, 100–140 mm, and 〉140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.展开更多
On the basis of a comprehensive literature review and data analysis of global influenza surveillance, a transmission theory based numerical model is developed to understand the causative factors of influenza seasonali...On the basis of a comprehensive literature review and data analysis of global influenza surveillance, a transmission theory based numerical model is developed to understand the causative factors of influenza seasonality and the biodynamical mechanisms of seasonal flu. The model is applied to simulate the seasonality and weekly activity of influenza in different areas across all continents and climate zones around the world. Model solution and the good matches between model output and actual influenza indexes affirm that influenza activity is highly auto-correlative and relies on determinants of a broad spectrum. Internal dynamic resonance; variations of meteorological elements (solar radiation, precipitation and dewpoint); socio-behavioral influences and herd immunity to circulating strains prove to be the critical explanatory factors of the seasonality and weekly activity of influenza. In all climate regions, influenza activity is proportional to the exponential of the number of days with precipitation and to the negative exponential of quarter power of sunny hours. Influenza activity is a negative exponential function of dewpoint in temperate and arctic regions and an exponential function of the absolute deviation of dewpoint from its annual mean in the tropics. Epidemics of seasonal influenza could be deemed as the consequence of the dynamic resonance and interactions of determinants. Early interventions (such as opportune vaccination, prompt social distancing, and maintaining incidence well below a baseline) are key to the control and prevention of seasonal influenza. Moderate amount of sunlight exposure or Vitamin D supplementation during rainy and short-day photoperiod seasons, more outdoor activities, and appropriate indoor dewpoint deserve great attention in influenza prevention. To a considerable degree, the study reveals the mechanism of influenza seasonality, demonstrating a potential for influenza activity projection. The concept and algorithm can be explored for further applications.展开更多
In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an ...In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an approximate linear relationship with surface temperature Ts, and the relationship presents regional variation. This paper employed sliding average method to calculate correlation coefficients and linear regression coefficients between Tm and Ts at every 2°× 2.5° grid point using Ts data from European Centre for Medium-Range Weather Forecasts(ECMWF) and Tm data from "GGOS Atmosphere", yielding the grid and bilinear interpolation-based Tm Grid model. Tested by Tm and Ts grid data, Constellation Observation System of Meteorology, Ionosphere, and Climate(COSMIC) data and radiosonde data, the Tm Grid model shows a higher accuracy relative to the Bevis Tm-Ts relationship which is widely used nowadays. The Tm Grid model will be of certain practical value in high-precision PWV calculation.展开更多
The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but ...The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.展开更多
Dissolution of fluorite (CaF2) and/or fluorapatite (FAP) [Cas(PO4)3F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F) contamination. Here, one...Dissolution of fluorite (CaF2) and/or fluorapatite (FAP) [Cas(PO4)3F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F) contamination. Here, one dimensional reactive-transport models are developed to test this mechanism using the published dissolution and precipitation rate kinetics for the mineral pair FAP and calcite. Simulation results correctly show positive correlation between the aqueous concentrations of F and CO2 and negative correlation between F- and Ca^2+. Results also show that precipitation of calcite, contrary to the present understanding, slows down the FAP dissolution by 10G orders of magnitude compared to the FAP dissolution by hydrolysis. For appreciable amount of fluoride contamination rock-water interaction time must be long and of order 106 years.展开更多
The heaviest rainfall over 61 yr hit Beijing during 21-22 July 2012.Characterized by great rainfall amount and intensity,wide range,and high impact,this record-breaking heavy rainfall caused dozens of deaths and exten...The heaviest rainfall over 61 yr hit Beijing during 21-22 July 2012.Characterized by great rainfall amount and intensity,wide range,and high impact,this record-breaking heavy rainfall caused dozens of deaths and extensive damage.Despite favorable synoptic conditions,operational forecasts underestimated the precipitation amount and were late at predicting the rainfall start time.To gain a better understanding of the performance of mesoscale models,verification of high-resolution forecasts and analyses from the WRFbased BJ-RUCv2.0 model with a horizontal grid spacing of 3 km is carried out.The results show that water vapor is very rich and a quasi-linear precipitation system produces a rather concentrated rain area.Moreover,model forecasts are first verified statistically using equitable threat score and BIAS score.The BJ-RUCv2.0forecasts under-predict the rainfall with southwestward displacement error and time delay of the extreme precipitation.Further quantitative analysis based on the contiguous rain area method indicates that major errors for total precipitation(〉 5 mm h^(-1)) are due to inaccurate precipitation location and pattern,while forecast errors for heavy rainfall(〉 20 mm h^(-1)) mainly come from precipitation intensity.Finally,the possible causes for the poor model performance are discussed through diagnosing large-scale circulation and physical parameters(water vapor flux and instability conditions) of the BJ-RUCv2.0 model output.展开更多
The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that ...The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.展开更多
This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general...This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.展开更多
基金funded by the Special Fund for Agro-scientific Research in the Public Interest of China (201203031,201303133)the National Natural Science Foundation of China (31071367)
文摘To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 〈100 mm, 100–140 mm, and 〉140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.
文摘On the basis of a comprehensive literature review and data analysis of global influenza surveillance, a transmission theory based numerical model is developed to understand the causative factors of influenza seasonality and the biodynamical mechanisms of seasonal flu. The model is applied to simulate the seasonality and weekly activity of influenza in different areas across all continents and climate zones around the world. Model solution and the good matches between model output and actual influenza indexes affirm that influenza activity is highly auto-correlative and relies on determinants of a broad spectrum. Internal dynamic resonance; variations of meteorological elements (solar radiation, precipitation and dewpoint); socio-behavioral influences and herd immunity to circulating strains prove to be the critical explanatory factors of the seasonality and weekly activity of influenza. In all climate regions, influenza activity is proportional to the exponential of the number of days with precipitation and to the negative exponential of quarter power of sunny hours. Influenza activity is a negative exponential function of dewpoint in temperate and arctic regions and an exponential function of the absolute deviation of dewpoint from its annual mean in the tropics. Epidemics of seasonal influenza could be deemed as the consequence of the dynamic resonance and interactions of determinants. Early interventions (such as opportune vaccination, prompt social distancing, and maintaining incidence well below a baseline) are key to the control and prevention of seasonal influenza. Moderate amount of sunlight exposure or Vitamin D supplementation during rainy and short-day photoperiod seasons, more outdoor activities, and appropriate indoor dewpoint deserve great attention in influenza prevention. To a considerable degree, the study reveals the mechanism of influenza seasonality, demonstrating a potential for influenza activity projection. The concept and algorithm can be explored for further applications.
基金supported by National Natural Science Foundation of China(41301377)by the Fundamental Research Funds for the Central Universities(2014214020202)by Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation(13-02-09)
文摘In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an approximate linear relationship with surface temperature Ts, and the relationship presents regional variation. This paper employed sliding average method to calculate correlation coefficients and linear regression coefficients between Tm and Ts at every 2°× 2.5° grid point using Ts data from European Centre for Medium-Range Weather Forecasts(ECMWF) and Tm data from "GGOS Atmosphere", yielding the grid and bilinear interpolation-based Tm Grid model. Tested by Tm and Ts grid data, Constellation Observation System of Meteorology, Ionosphere, and Climate(COSMIC) data and radiosonde data, the Tm Grid model shows a higher accuracy relative to the Bevis Tm-Ts relationship which is widely used nowadays. The Tm Grid model will be of certain practical value in high-precision PWV calculation.
基金financial support from National Natural Science Foundation of China (12072211)Sichuan Province Science and Technology Project (2020JDJQ0029)。
文摘The interactions between a plate-like precipitate and two twin boundaries(TBs)({1012},{1121}) in magnesium alloys are studied using molecular dynamics(MD) simulations. The precipitate is not sheared by {1012} TB, but sheared by {1121} TB. Shearing on the(110) plane is the predominant deformation mode in the sheared precipitate. Then, the blocking effects of precipitates with different sizes are studied for {1121} twinning. All the precipitates show a blocking effect on {1121} twinning although they are sheared, while the blocking effects of precipitates with different sizes are different. The blocking effect increases significantly with the increasing precipitate length(in-plane size along TB) and thickness, whereas changes weakly as the precipitate width changes. Based on the revealed interaction mechanisms, a critical twin shear is calculated theoretically by the Eshelby solutions to determine which TB is able to shear the precipitate. In addition, an analytical hardening model of sheared precipitates is proposed by analyzing the force equilibrium during TB-precipitate interactions. This model indicates that the blocking effect depends solely on the area fraction of the precipitate cross-section, and shows good agreement with the current MD simulations. Finally, the blocking effects of plate-like precipitates on the {1012} twinning(non-sheared precipitate), {1121} twinning(sheared precipitate) and basal dislocations(non-sheared precipitate) are compared together. Results show that the blocking effect on {1121} twinning is stronger than that on {1012} twinning, while the effect on basal dislocations is weakest. The precipitate-TB interaction mechanisms and precipitation hardening models revealed in this work are of great significance for improving the mechanical property of magnesium alloys by designing microstructure.
文摘Dissolution of fluorite (CaF2) and/or fluorapatite (FAP) [Cas(PO4)3F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F) contamination. Here, one dimensional reactive-transport models are developed to test this mechanism using the published dissolution and precipitation rate kinetics for the mineral pair FAP and calcite. Simulation results correctly show positive correlation between the aqueous concentrations of F and CO2 and negative correlation between F- and Ca^2+. Results also show that precipitation of calcite, contrary to the present understanding, slows down the FAP dissolution by 10G orders of magnitude compared to the FAP dissolution by hydrolysis. For appreciable amount of fluoride contamination rock-water interaction time must be long and of order 106 years.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2013CB430106)China Meteorological Administration Special Public Welfare Research Fund(GYHY201206005)+1 种基金National Natural Science Foundation of China(41175087)National Fund for Fostering Talents(J1103410)
文摘The heaviest rainfall over 61 yr hit Beijing during 21-22 July 2012.Characterized by great rainfall amount and intensity,wide range,and high impact,this record-breaking heavy rainfall caused dozens of deaths and extensive damage.Despite favorable synoptic conditions,operational forecasts underestimated the precipitation amount and were late at predicting the rainfall start time.To gain a better understanding of the performance of mesoscale models,verification of high-resolution forecasts and analyses from the WRFbased BJ-RUCv2.0 model with a horizontal grid spacing of 3 km is carried out.The results show that water vapor is very rich and a quasi-linear precipitation system produces a rather concentrated rain area.Moreover,model forecasts are first verified statistically using equitable threat score and BIAS score.The BJ-RUCv2.0forecasts under-predict the rainfall with southwestward displacement error and time delay of the extreme precipitation.Further quantitative analysis based on the contiguous rain area method indicates that major errors for total precipitation(〉 5 mm h^(-1)) are due to inaccurate precipitation location and pattern,while forecast errors for heavy rainfall(〉 20 mm h^(-1)) mainly come from precipitation intensity.Finally,the possible causes for the poor model performance are discussed through diagnosing large-scale circulation and physical parameters(water vapor flux and instability conditions) of the BJ-RUCv2.0 model output.
基金the National Natural Science Foundation of China under Grant No.40805041Chinese COPES Project under Grant No.GYHY200706005
文摘The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.
基金Project jointly supported by the Key Project of National Basic Research"Research on the Formation Mechanism Prediction Theory of Severe ClimaticSynoptic Disasters in China"through"973"grant No.G1998040911,G1998040900 and by the National Natu
文摘This is an investigation of exchanges of energy and water between the atmosphere and the vegetated continents,and the impact of and mechanisms for land surface-atmosphere interactions on hydrological cycle and general circulation by implementing the Simplified Simple Biosphere (SSiB)model in a modified version of IAP/LASG global spectral general model(L9R15 AGCM). This study reveals that the SSiB model produces a better partitioning of the land surface heat and moisture fluxes and its diurnal variations,and also gives the transport of energy and water among atmosphere,vegetation and soil explicitly and realistically.Thus the coupled SSiB-AGCM runs lead to the more conspicuous improvement in the simulated circulation,precipitation,mean water vapor content and its transport.particularly in the Asian monsoon region in the real world than CTL-AGCM runs.It is also pointed out that both the implementation of land surface parameterizations and the variations in land surface into the GOALS model have greatly improved hydrological balance over continents and have a significant impact on the simulated climate. particularly over the massive continents. Improved precipitation recycling model was employed to verify the mechanisms for land surface hydrology parameterizations on hydrological cycle and precipitation climatology in AGCM. It can be argued that the recycling precipitation rate is significantly reduced,particularly in the arid and semi-arid region of the boreal summer hemisphere,coincident with remarkable reduction in evapotranspiration over the continental area.Therefore the coupled SSiB-AGCM runs reduce the bias of too much precipitation over land surface in most AGCMs,thereby bringing the simulated precipitation closer to observations in many continental regions of the world than CTL-AGCM runs.