期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Dynamic fracture toughness of high strength metals under impact loading:increase or decrease 被引量:5
1
作者 Ze-Jian Xu Yu-Long Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第4期559-566,共8页
An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1.... An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range. 展开更多
关键词 Dynamic fracture. Fracture toughness Loadingrate effect - Hopkinson pressure bar High strength metal
下载PDF
A Research on the Usage of Corn Cob in Producing Lightweight Concrete
2
作者 Sermin Polat 《Natural Resources》 2021年第10期339-347,共9页
<span style="font-family:Verdana;">In this study, the possibility of using corn cobs as an organic aggregate in producing lightweight concrete ha</span><span style="font-family:Verdana;&q... <span style="font-family:Verdana;">In this study, the possibility of using corn cobs as an organic aggregate in producing lightweight concrete ha</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> been investigated. First, some important physical properties of corn cob have been determined in the laboratory. These properties are as follows: weight to volume ratio (unit weight), water absorption rate and granulometric analysis. Later on, 4 concrete mixtures have been prepared according to </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">workability of concrete and standar</span><span style="font-family:Verdana;">d</span><span style="font-family:;" "=""><span style="font-family:Verdana;">s specified in Turkey. After that, unit weight, heat transmissibility coefficient and 28-day pressure strength of these 4 concrete samples have been determined using machines measuring these properties. The 28-day pressure endurance value has been found between 1.4 - 56.25 kgf/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">,</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">heat transmissibility coefficient ha</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> been found between 0.19 - 0.35 Kcal/m<span style="white-space:nowrap;">&#8729;</span></span><span style="font-family:Verdana;">h<span style="white-space:nowrap;">&#8729;</span><span style="white-space:nowrap;">&#730;</span>C and unit weight of samples have been found between 800 - 1520 kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. Lastly</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> these properties of concrete samples have been compared with other lightweight materials being used in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">construction of buildings.</span> 展开更多
关键词 Ground Corn Cob Lightweight Concrete AGGREGATE Granulometric Analisi pressure strength
下载PDF
Numerical modeling of permeability evolution based on degradation approach during progressive failure of brittle rocks 被引量:4
3
作者 Zhang Chunhui Yue Hongliang +1 位作者 Zhao Quansheng Wang Laigui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期535-542,共8页
The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confi... The permeability evolution of rock during the progressive failure process is described. In combination with the strength degradation index, the degradation formulas of s and a, which are dependent on the plastic confining strain component, the material constants of Hock-Brown failure criterion are presented, and a modified elemental scale elastic-brittle-plastic constitutive model of rock is established. The rela- tionship between volumetric strain and permeability through tri-axial compression is investigated. Based on the above, a permeability evolution model is established. The model incorporates confining pressure- dependent degradation of strength, dilatancy and corresponding permeability evolution. The model is implemented in FLAC by the FISH function method. The permeability evolution behavior of rock is inves-tigated during the progressive failure process in a numerical case. The results show that the model is cap- able of reproducing, and allowing visualization of a range of hydro-mechanical responses of rock. The effects of confining pressure on degradation of strength, dilatancy and permeability evolution are also reflected. 展开更多
关键词 Hoek-Brown failure criterion Dilatancy Permeability evolution Confining pressure Degradation of strength
下载PDF
Numerical Analyses of Caisson Breakwaters on Soft Foundations Under Wave Cyclic Loading 被引量:5
4
作者 王元战 焉振 王禹迟 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期1-18,共18页
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressur... A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated. 展开更多
关键词 soft layer strength degradation pore pressure development wave cyclic loading dynamic finite element method
下载PDF
Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures 被引量:8
5
作者 Qiu-lin Niu Wei-wei Ming +2 位作者 Ming Chen Si-wen Tang Peng-nan Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第7期724-729,共6页
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro... During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature. 展开更多
关键词 30CrMnSiNi2A steel Dynamic mechanical behavior Split Hopkinson pressure bar High temperature High strain rate Ultra-high strength steel
原文传递
Investigation of influential factors on the tensile strength of cold recycled mixture with bitumen emulsion due to moisture conditioning 被引量:1
6
作者 Mouhamed Bayane Bouraima Yanjun Qiu 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第2期198-205,共8页
The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave... The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave gyratory compactor. They were hence condi- tioned using moisture induced sensitivity tester (MIST) device. Factorial design was carried out considering four factors each at two different levels. These factors were specimen thickness, air voids content, pressure and number of cycles. In the MIST device, samples are cyclically subjected to water pressure through the sample pores. The MIST conditioned samples were tested for indirect tensile strength. The analysis of two-level full-factorial designed experiments revealed that all four factors have a negative effect on tensile strength of cold recycled mixture with bitumen emulsion. Specimen thickness was the most significant factor affecting the tensile strength followed by air voids content. In two- factor interaction, specimen thickness-number of cycles, air voids content-pressure, and pressure-number of cycles were significant. The most significant three-factor interaction was specimen thickness-pressure-number of cycles. The results from the study suggest that in measuring tensile strength, the appropriate specimen thickness and air voids content should be selected to quantify the representative tensile strength for in-situ conditions. 展开更多
关键词 Tensile strength Factorial design Specimen thickness Air voids content pressure Number of cycles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部