Uemura [1] discovered the mapping formula for Type 1 Vague events and presented an alternative problem as an example of its application. Since it is well known that the alternative problem leads to sequential Bayesian...Uemura [1] discovered the mapping formula for Type 1 Vague events and presented an alternative problem as an example of its application. Since it is well known that the alternative problem leads to sequential Bayesian inference, the flow of subsequent research was to make the mapping formula multidimensional, to introduce the concept of time, and to derive a Markov (decision) process. Furthermore, we formulated stochastic differential equations to derive them [2]. This paper refers to type 2 vague events based on a second-order mapping equation. This quadratic mapping formula gives a certain rotation named as possibility principal factor rotation by transforming a non-mapping function by a relation between two mapping functions. In addition, the derivation of the Type 2 Complex Markov process and the initial and stopping conditions in this rotation are mentioned. .展开更多
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial...Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity.展开更多
Rationale: In the literature, some risk factors for severity and mortality from COVID-19 have been indicated. However, these factors can change, depending on the characteristics of the population and health services. ...Rationale: In the literature, some risk factors for severity and mortality from COVID-19 have been indicated. However, these factors can change, depending on the characteristics of the population and health services. In this sense, longitudinal studies can be useful for understanding local realities and subsidizing health actions based on these realities. Objective: To analyze the risk factors for severity and death in hospitalized patients with COVID-19. Methods: A retrospective cohort of patients with COVID-19 hospitalized from August 1 to October 16, 2021 (3<sup>rd</sup> wave of the pandemic), notified by the Department of Epidemiological Surveillance of Sao Tome and Principe. We employed measures of strength of associations for the analysis of exposure risk factors. Results: We analyzed 110 hospitalized patients (31.8% severe-critical and 68.2% non-severe). The risk factors for severe forms of COVID-19 were: being aged ≥60 years (RR = 3.3), being male (RR = 2), having comorbidities (RR = 2) and the risk increases to 10-fold for multicomorbidities, with emphasis on obesity, neoplasia, skin-muscle-surgical infection, dementia and to some degree CVD. 62.9% of patients with severe forms of the disease were not vaccinated. Risk factors for death among hospitalized and severe/critical cases, respectively, were having comorbidities (RR = 8 and 2.4) multicomorbidities (RR = 10 and 2.8 for those with 2 comorbidities and RR = 33.3 and 4 for those with 3 or 4 comorbidities), especially diabetes, dementia, neoplasia, cutaneous-muscular infection, and obesity. Although CVD was not associated with risk factors for death, these were the most frequently found among the severely hospitalized and deaths. In addition, important risk factors associated with death were not using corticoids (RR = 3.3, 230-fold risk) and not using anticoagulants-heparin (RR = 1.3, 30% risk) more compared to the severe cases that did use them. Most of the patients who died (63.2%) were not vaccinated. Moreover, having only 1 dose of the vaccine was a risk factor 1.9 times more for death among all hospitalized patients, but in the severe cases, there was no association between the variable vaccination and death. Among those hospitalized with 2 doses, it was a 0.5-fold protective factor among those hospitalized. The Delta variant of Sarscov-2 was the one found among severe cases and deaths investigated by genetic sequencing, with more exuberant clinical features compared to the other 2 previous vaccinations. Conclusion: Being elderly, male and presenting comorbidities, mainly multicomorbidities were the main characteristics associated with severity of COVID-19. On the other hand, comorbidities, and even worse, multicomorbidities, hospitalization for respiratory failure, lowered level of consciousness, no use of corticoid and no use of anticoagulation in critically ill patients, and not having at least 2 doses of vaccine for covid-19, were characteristics associated with death by COVID-19. These results will help inform healthcare providers so that the best interventions can be implemented to improve outcomes for patients with COVID-19. Public health interventions must be carefully tailored and implemented in these susceptible groups to reduce the risk of mortality in patients with COVID-19 and then the risk of major complications. Intensive and regular follow-up is needed to detect early occurrences of clinical conditions.展开更多
Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study co...Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.展开更多
Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal compo...Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal component analysis, the land ecological security of Hohhot from 2009 to 2015 was analyzed. The results showed that the land ecological security of Hohhot was declining year by year in 2009-2015. Besides, per capital GDP and public green area, the proportion of in- dustry and the price index of agricultural and animal husbandry production materials were the key factors influencing the land ecological security of Hohhot. The key for protection of the land ecological security may lie in the protection of land quality and prevention of land degradation in farming and stock-breeding areas.展开更多
The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but m...The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.展开更多
To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, dia...To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, diameter,age), maintenance cost, valve replacement cost, and annual average pressure. Based on variable selection and principal component analysis results, we extracted three main principle components—the pipe attribute principal component(PAPC), operation management principal component, and water pressure principal component. Of these, we found PAPC to have the most influence. Using principal component regression, we established an LRLF model with no detectable serial correlations. The adjusted R2 and RMSE values of the model were 0.717 and 2.067, respectively.This model represents a potentially useful tool for controlling leakage rate from the macroscopic viewpoint.展开更多
Having researched for many years, seismologists in China presented about 80 earthquake prediction factors which reflected omen information of earthquake. How to concentrate the information that the 80 earthquake predi...Having researched for many years, seismologists in China presented about 80 earthquake prediction factors which reflected omen information of earthquake. How to concentrate the information that the 80 earthquake prediction factors have and how to choose the main factors to predict earthquakes precisely have become one of the topics in seismology. The model of principal component-discrimination consists of principal component analysis, correlation analysis, weighted method of principal factor coefficients and Mahalanobis distance discrimination analysis. This model combines the method of maximization earthquake prediction factor information with the weighted method of principal factor coefficients and correlation analysis to choose earthquake prediction variables, applying Mahalanobis distance discrimination to establishing earthquake prediction discrimination model. This model was applied to analyzing the earthquake data of Northern China area and obtained good prediction results.展开更多
Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computati...Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.展开更多
Dealing with water resources issues requires understanding of the community perception. It is important to create a communicative partnership between community and government towards sustainable water resources manage...Dealing with water resources issues requires understanding of the community perception. It is important to create a communicative partnership between community and government towards sustainable water resources management. Opinion survey is an essential step to gather the point of view from local community. However, it always generates a large and complex dataset that are difficult to be interpreted by decision maker. In order to overcome this difficulty, statistical methods are applied to develop an interpretability model for decision maker. This study demonstrated the application of Descriptive Analysis and Principle Factor Analysis (PFA) to reduce the complexity of opinion survey dataset by revealing underlying information. A total of 106 respondents were interviewed; consisting of 68 male and 38 female respondents respectively. This study first applied descriptive analysis to identify the basic score for each variable, and these variables are soil erosion (68.9%), degradation of water quality (65.1%), degradation of freshwater ecosystem (61.0%), water shortage (50%), agricultural solid waste problem (46.2%), water borne diseases (23.6%), illegal land clearing (21.7%), legal land clearing (15.1%), uncontrolled river water abstraction in upstream (54.7%)), poor solid waste management (34.0%), low awareness of local community (61.3%), haphazard planning and development (74.5%) and administration mistake (37.0%). Based on the PFA result, a total of four rotated factors were extracted, representing different aspects of water related issues in Cameron Highlands. Factor 1, 2, 3 and 4 were summarised to four topics namely: (1) water environment degradation caused by illegal solid waste disposal and low awareness of community, (2) agricultural development leading to negative impacts on water resources such as water shortage and ecosystem deterioration, (3) land clearing activity leading to serious land erosion (4) human health problem due to e-coli bacterial pollution and administration mistake on land development in Cameron Highlands.展开更多
Since the founding of the People’s Republic of China in 1949,the Communist Party of China(CPC)has separated China’s evolving principal social contradictions into four different stages.Based on the assessment of prin...Since the founding of the People’s Republic of China in 1949,the Communist Party of China(CPC)has separated China’s evolving principal social contradictions into four different stages.Based on the assessment of principal social contradictions at different points in time,the CPC enacted different economic policies.During 1949-1956,based on the recognition of class struggle as China’s principal social contradiction,the Party focused its economic policies on socialist transformation and established the foundation for the public sector of the economy.During 1956-1978,amid flip-flops in the Party’s assessment of whether class struggle or backward productive forces were the principal contradiction,China’s economic development suffered some setbacks,but the vision for building an industrial country remained unchanged,and resources were focused on developing major national industrial projects.During 1978-2019,the Party focused on economic development and reform and opening up in pursuit of the realization of grand economic development goals based on the assessment that China’s principal social contradiction was between people’s ever-growing material and cultural needs and China’s relatively backward social productive forces.In 2017,the 19th CPC National Congress made the important political assessment that China’s principal social contradiction had transformed into the contradiction between people’s ever-growing need for a better life and China’s unbalanced and inadequate development,and proposed new development concepts to lead the Chinese people on a new journey towards the second centennial goal.The most important experience of the CPC’s economic work is analyzing and solving problems based on Marxist ideology and methodology.展开更多
Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, seque...Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.展开更多
文摘Uemura [1] discovered the mapping formula for Type 1 Vague events and presented an alternative problem as an example of its application. Since it is well known that the alternative problem leads to sequential Bayesian inference, the flow of subsequent research was to make the mapping formula multidimensional, to introduce the concept of time, and to derive a Markov (decision) process. Furthermore, we formulated stochastic differential equations to derive them [2]. This paper refers to type 2 vague events based on a second-order mapping equation. This quadratic mapping formula gives a certain rotation named as possibility principal factor rotation by transforming a non-mapping function by a relation between two mapping functions. In addition, the derivation of the Type 2 Complex Markov process and the initial and stopping conditions in this rotation are mentioned. .
基金This work was supported by the Scientific Research Project of Anhui Province Universities,China(No.YJS20210388)the National Natural Science Foundation of China(Nos.51974009,52004006,and 52004005)+2 种基金the Major Science and Technology Special Project of Anhui Province,China(No.202203a07020011)the Collaborative Innovation Project of Anhui Province Universities,China(No.GXXT-2021-075)the Huaibei City Science and Technology Major Program(No.Z2020005).
文摘Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity.
文摘Rationale: In the literature, some risk factors for severity and mortality from COVID-19 have been indicated. However, these factors can change, depending on the characteristics of the population and health services. In this sense, longitudinal studies can be useful for understanding local realities and subsidizing health actions based on these realities. Objective: To analyze the risk factors for severity and death in hospitalized patients with COVID-19. Methods: A retrospective cohort of patients with COVID-19 hospitalized from August 1 to October 16, 2021 (3<sup>rd</sup> wave of the pandemic), notified by the Department of Epidemiological Surveillance of Sao Tome and Principe. We employed measures of strength of associations for the analysis of exposure risk factors. Results: We analyzed 110 hospitalized patients (31.8% severe-critical and 68.2% non-severe). The risk factors for severe forms of COVID-19 were: being aged ≥60 years (RR = 3.3), being male (RR = 2), having comorbidities (RR = 2) and the risk increases to 10-fold for multicomorbidities, with emphasis on obesity, neoplasia, skin-muscle-surgical infection, dementia and to some degree CVD. 62.9% of patients with severe forms of the disease were not vaccinated. Risk factors for death among hospitalized and severe/critical cases, respectively, were having comorbidities (RR = 8 and 2.4) multicomorbidities (RR = 10 and 2.8 for those with 2 comorbidities and RR = 33.3 and 4 for those with 3 or 4 comorbidities), especially diabetes, dementia, neoplasia, cutaneous-muscular infection, and obesity. Although CVD was not associated with risk factors for death, these were the most frequently found among the severely hospitalized and deaths. In addition, important risk factors associated with death were not using corticoids (RR = 3.3, 230-fold risk) and not using anticoagulants-heparin (RR = 1.3, 30% risk) more compared to the severe cases that did use them. Most of the patients who died (63.2%) were not vaccinated. Moreover, having only 1 dose of the vaccine was a risk factor 1.9 times more for death among all hospitalized patients, but in the severe cases, there was no association between the variable vaccination and death. Among those hospitalized with 2 doses, it was a 0.5-fold protective factor among those hospitalized. The Delta variant of Sarscov-2 was the one found among severe cases and deaths investigated by genetic sequencing, with more exuberant clinical features compared to the other 2 previous vaccinations. Conclusion: Being elderly, male and presenting comorbidities, mainly multicomorbidities were the main characteristics associated with severity of COVID-19. On the other hand, comorbidities, and even worse, multicomorbidities, hospitalization for respiratory failure, lowered level of consciousness, no use of corticoid and no use of anticoagulation in critically ill patients, and not having at least 2 doses of vaccine for covid-19, were characteristics associated with death by COVID-19. These results will help inform healthcare providers so that the best interventions can be implemented to improve outcomes for patients with COVID-19. Public health interventions must be carefully tailored and implemented in these susceptible groups to reduce the risk of mortality in patients with COVID-19 and then the risk of major complications. Intensive and regular follow-up is needed to detect early occurrences of clinical conditions.
基金Research Project of China Ship Development and Design Center。
文摘Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.
基金Supported by the Funding Project for the Youth of Education Ministry for the Development of Liberal Arts and Social Sciences(12YJC790058)the Guidance Plan Project for the Natural Science Foundation of Hubei(2013CFC089)the Open-end Fund of Hubei Ecological Culture Research Center,China University of Geosciences(Wuhan)~~
文摘Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal component analysis, the land ecological security of Hohhot from 2009 to 2015 was analyzed. The results showed that the land ecological security of Hohhot was declining year by year in 2009-2015. Besides, per capital GDP and public green area, the proportion of in- dustry and the price index of agricultural and animal husbandry production materials were the key factors influencing the land ecological security of Hohhot. The key for protection of the land ecological security may lie in the protection of land quality and prevention of land degradation in farming and stock-breeding areas.
基金Supported by the 973 project of China (2013CB733600), the National Natural Science Foundation (21176073), the Doctoral Fund of Ministry of Education (20090074110005), the New Century Excellent Talents in University (NCET-09-0346), "Shu Guang" project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.
基金supported by the Ministry of Science and Technology of China (No.2014ZX07203-009)the Fundamental Research Funds for the Central Universitiesthe Program for New Century Excellent Talents at the University of China
文摘To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, diameter,age), maintenance cost, valve replacement cost, and annual average pressure. Based on variable selection and principal component analysis results, we extracted three main principle components—the pipe attribute principal component(PAPC), operation management principal component, and water pressure principal component. Of these, we found PAPC to have the most influence. Using principal component regression, we established an LRLF model with no detectable serial correlations. The adjusted R2 and RMSE values of the model were 0.717 and 2.067, respectively.This model represents a potentially useful tool for controlling leakage rate from the macroscopic viewpoint.
文摘Having researched for many years, seismologists in China presented about 80 earthquake prediction factors which reflected omen information of earthquake. How to concentrate the information that the 80 earthquake prediction factors have and how to choose the main factors to predict earthquakes precisely have become one of the topics in seismology. The model of principal component-discrimination consists of principal component analysis, correlation analysis, weighted method of principal factor coefficients and Mahalanobis distance discrimination analysis. This model combines the method of maximization earthquake prediction factor information with the weighted method of principal factor coefficients and correlation analysis to choose earthquake prediction variables, applying Mahalanobis distance discrimination to establishing earthquake prediction discrimination model. This model was applied to analyzing the earthquake data of Northern China area and obtained good prediction results.
基金the HKRGC GRF 12306616,12200317,12300218 and 12300519,and HKU Grant 104005583.
文摘Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.
文摘Dealing with water resources issues requires understanding of the community perception. It is important to create a communicative partnership between community and government towards sustainable water resources management. Opinion survey is an essential step to gather the point of view from local community. However, it always generates a large and complex dataset that are difficult to be interpreted by decision maker. In order to overcome this difficulty, statistical methods are applied to develop an interpretability model for decision maker. This study demonstrated the application of Descriptive Analysis and Principle Factor Analysis (PFA) to reduce the complexity of opinion survey dataset by revealing underlying information. A total of 106 respondents were interviewed; consisting of 68 male and 38 female respondents respectively. This study first applied descriptive analysis to identify the basic score for each variable, and these variables are soil erosion (68.9%), degradation of water quality (65.1%), degradation of freshwater ecosystem (61.0%), water shortage (50%), agricultural solid waste problem (46.2%), water borne diseases (23.6%), illegal land clearing (21.7%), legal land clearing (15.1%), uncontrolled river water abstraction in upstream (54.7%)), poor solid waste management (34.0%), low awareness of local community (61.3%), haphazard planning and development (74.5%) and administration mistake (37.0%). Based on the PFA result, a total of four rotated factors were extracted, representing different aspects of water related issues in Cameron Highlands. Factor 1, 2, 3 and 4 were summarised to four topics namely: (1) water environment degradation caused by illegal solid waste disposal and low awareness of community, (2) agricultural development leading to negative impacts on water resources such as water shortage and ecosystem deterioration, (3) land clearing activity leading to serious land erosion (4) human health problem due to e-coli bacterial pollution and administration mistake on land development in Cameron Highlands.
文摘Since the founding of the People’s Republic of China in 1949,the Communist Party of China(CPC)has separated China’s evolving principal social contradictions into four different stages.Based on the assessment of principal social contradictions at different points in time,the CPC enacted different economic policies.During 1949-1956,based on the recognition of class struggle as China’s principal social contradiction,the Party focused its economic policies on socialist transformation and established the foundation for the public sector of the economy.During 1956-1978,amid flip-flops in the Party’s assessment of whether class struggle or backward productive forces were the principal contradiction,China’s economic development suffered some setbacks,but the vision for building an industrial country remained unchanged,and resources were focused on developing major national industrial projects.During 1978-2019,the Party focused on economic development and reform and opening up in pursuit of the realization of grand economic development goals based on the assessment that China’s principal social contradiction was between people’s ever-growing material and cultural needs and China’s relatively backward social productive forces.In 2017,the 19th CPC National Congress made the important political assessment that China’s principal social contradiction had transformed into the contradiction between people’s ever-growing need for a better life and China’s unbalanced and inadequate development,and proposed new development concepts to lead the Chinese people on a new journey towards the second centennial goal.The most important experience of the CPC’s economic work is analyzing and solving problems based on Marxist ideology and methodology.
文摘Uemura [1] discovered a mapping formula that transforms and maps the state of nature into fuzzy events with a membership function that expresses the degree of attribution. In decision theory in no-data problems, sequential Bayesian inference is an example of this mapping formula, and Hori et al. [2] made the mapping formula multidimensional, introduced the concept of time, to Markov (decision) processes in fuzzy events under ergodic conditions, and derived stochastic differential equations in fuzzy events, although in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 Fuzzy Events are transformed and mapped onto the state of nature by a quadratic mapping formula that simultaneously considers longitudinal and transverse ambiguity, the joint stochastic differential equation representing these two ambiguities can be applied to possibility principal factor analysis if the weights of the equations are orthogonal. This indicates that the type 2 fuzzy is a two-dimensional possibility multivariate error model with longitudinal and transverse directions. Also, when the weights are oblique, it is a general possibility oblique factor analysis. Therefore, an example of type 2 fuzzy system theory is the possibility factor analysis. Furthermore, we show the initial and stopping condition on possibility factor rotation, on the base of possibility theory.