The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling softw...The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.展开更多
Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement ef...Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.展开更多
Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability r...Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.展开更多
Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and ...Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.展开更多
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t...Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.展开更多
The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristic...The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.展开更多
Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensi...Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.展开更多
The cow-calf (Bos taurus) industry in subtropical United States and other parts of the world that depends almost totally on grazed pastures is facing several production constraints like changing climatic conditions an...The cow-calf (Bos taurus) industry in subtropical United States and other parts of the world that depends almost totally on grazed pastures is facing several production constraints like changing climatic conditions and increasing cost of fertilizers, especially nitrogen (N). Particularly little is known about the response of forage species to the combined effect of water-logging and the addition of N. A two-year greenhouse study was conducted in 2008 and 2009 to determine i) the effect of flooding duration on N recovery and agronomic efficiency of bahiagrass (Paspalum notatum Fluegge) compared with two flooding tolerant forages, limpograss (Hemarthria altissima Poir), and maidencane (Panicum hematomon Schult) and ii) if N fertilization could mitigate the negative effect of flooding. Nitrogen recovery and agronomic efficiency varied significantly (P ≤ 0.001) among forage species. Averaged across levels of N, N recovery of bahiagrass and limpograss was reduced by about 41% and 56%, respectively after 84 d of continued flooding while N recovery of maidencane was slightly increase by about 5% between 0 and 84 d of flooding. Agronomic efficiencies of bahiagrass (41% to 26%) and limpograss (44% to 31%) were reduced by flooding while agronomic efficiency of maidencane was increased from 24% (no flooding) to 46% at 84 d of continued flooding. However, N recovery and agronomic efficiency of three forage species was positively affected by N fertilization. The overall N recovery of bahiagrass, limpograss, and maidencane ranged from 44% to 59%. Nitrogen fertilization could improve N recovery and agronomic efficiency of forage species under waterlogged condition.展开更多
Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control...Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.展开更多
A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice unde...A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m^3/ha under the flooded cultivation, 4 750 m^3/ha under the non-flooded cultivation without straw mulching (ZM) and 4 680 m^3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM〉 ZM〉 FC.展开更多
An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The cal...An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The calculation method for the meshing efficiency of planetary transmission is analyzed and the equation of the meshing efficiency is deduced.Relationships between the meshing efficiency,the radius of the pin wheel and the eccentric distance are revealed.The design constraint quations and the strength constraint quations are deduced.On the basis of this,a design procedure is laid out.Some examples using different input parameters are conducted to demonstrate the feasibility of the approach.A dynamic simulation of the rigid flexible coupling of cycloid gears is also presented.The results show that the proposed design method is more flexible to control the tooth profiles by changing the input values of the transmission efficiency.展开更多
To meet the requirements of improving the efficiency in lapping operat ion, the effect of lap surface profile on the efficiency is analyzed theoretical ly and an experimental study is carried out on lapping of Mn Zn ...To meet the requirements of improving the efficiency in lapping operat ion, the effect of lap surface profile on the efficiency is analyzed theoretical ly and an experimental study is carried out on lapping of Mn Zn ferrite. It is f ound that the profile of lap surface affects significantly the efficiency by mea ns of its capacity to keep loose grains and fixed grains during lapping, and tha t the efficiency can be increased by several times by using a lap with proper surface profile, while the same work surface roughness can be finally obtained.展开更多
TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriat...TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriately as a corridor or aerial implementation with proper spacing. Hence in many previous studies, their impact was mainly evaluated in scope of average and 85th percentile speed reduction. This paper presents and appraises the efficiency of calming measures of various types used in the city of Bialystok, Poland in terms of their influence zone. The assessment is based on speed profiles derived from individual test rides conducted with test vehicle equipped with GPS (global positioning system) data logger to obtain vehicle trajectory data. Speed measurements were conducted in vicinity of most commonly installed calming measures such as speed cameras, raised pedestrian crossing, raised intersection, speed bumps and speed cushion. The results reveal great differences within analysed devices and the usefulness of speed profiles in evaluation of their effectiveness. Speed bumps, most frequently used device in practice due to their low cost installation and speed reduction effectiveness, demonstrate lowest usefulness when influence zone is considered.展开更多
This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectr...This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).展开更多
CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technol...CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.展开更多
In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by n...In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by nitrogen(N)availability,however,the underlying mechanism is unclear for deep soils,which complicates the prediction of deep soil C cycling in response to N deposition.A series of N applications with ^(13)C labeled glucose was set to investigate the effect of labile C and N on deep SOC mineralization.Microbial biomass,functional community,metabolic efficiency and enzyme activities were examined for their effects on SOC mineralization and PE.During incubation,glucose addition promoted SOC mineralization,resulting in positive PE.The magnitude of PE decreased significantly with increasing N.The N-regulated PE was not dependent on extracellular enzyme activities but was positively correlated with carbon use efficiency and negatively with metabolic quotient.Higher N levels resulted in higher microbial biomass and SOC-derived microbial biomass than lower N levels.These results suggest that the decline in the PE under high N availability was mainly controlled by higher microbial metabolic efficiency which allocated more C for growth.Structural equation modelling also revealed that microbial metabolic efficiency rather than enzyme activities was the main factor regulating the PE.The negative effect of additional N suggests that future N deposition could promote soil C sequestration.展开更多
This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could rea...This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could reach ultra-low interracial tension and combination surfactant RZ-JD80 with strong emulsifying property are chosen to do oil displacement and profile control-oil displacement experiment in homogeneous core and heterogeneous core respectively. The experiment is aimed to study the effect of oil displacement by injecting surfactant individually and the effect after injecting different profile control agent slug before surfactant flooding in heterogeneous cores. The results suggest that injecting Rui Feng surfactant and RZ-JD80 individually could enhance the oil displacement efficiency about 15 percentage points for homogeneous core. For strongly heterogeneous core, it is low efficiency by using either of these two surfactants individually. However, if injected a very little profile control agent slug before surfactant flooding, both of these two kinds of surfactant could enhance the oil recovery by different degree, especially, polymer microsphere plugging^RZ-JD80 flooding composite technology is more adaptable to Gao-63 reservoir. This technology could increase the recovery by 18.52 percentage points aRer surfactant flooding.展开更多
In this investigation, UniSim software and the Soave-Redlich-Kong (SRK) thermodynamic model were utilized to study flooding in a Naphta stripping column. The objective of this study was to evaluate the impact of incre...In this investigation, UniSim software and the Soave-Redlich-Kong (SRK) thermodynamic model were utilized to study flooding in a Naphta stripping column. The objective of this study was to evaluate the impact of increasing feed flowrate from a design load of 121 m</span><sup><span style="font-size:12px;font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/hr</span></span><span style="font-family:Verdana;">.</span><span style="font-family:""><span style="font-family:Verdana;"> to 165 m</span><sup><span style="font-size:12px;font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/hr</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> on the performance of the plate column. In order to study only flooding in the column, UniSim software was run by keeping the LPG (Liquefied Gas petroleum) and Naphta products within the required specifications. According to the original design specifications of the stripping column, it should not be operated at high feed rates and differential pressure must not exceed 600 mbar. For the purpose of simulation, this value corresponds to a maximum allowable flooding percentage of 85%. The simulation results show that the flooding percentage was 144.5% in the case under study and 83.7% for the design case. Flooding occurred in all parts of the column with diameters of 2 m and 2.7 m. For the case under investigation, the reflux to feed ratio was reduced from 0.45 (design case) to 0.2. The originality of this investigation is the utilization of the temperature profile in the column as a tool to detect the plates where flooding could take place. The column temperature profile during the case under study suggests instability in the plates between trays 5 to 15. It is therefore suspected that flooding takes place mainly between those plates</span><span style="font-family:Verdana;">.展开更多
Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production leve...Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production level during the blank water flooding stage is proposed.According to the basic principle of reservoir engineering that the“recovery factor is equal to sweeping coefficient multiplied by oil displacement efficiency”,the formula for calculating the ultimate oil recovery factor of chemical combination flooding reservoir was established.By dividing the reservoir into a series of grids according to differen-tial calculus thinking,the relationship between the ultimate recovery factor of a certain number of grids and the recovery de-gree of the reservoir was established,and then the variation law of oil production rate of the STRC reservoir was obtained.The concept of“oil rate enlargement factor of chemical combination flooding”was defined,and a production calculation method of reservoir developed by STRC was put forward based on practical oilfield development experience.The study shows that the oil production enhancing effect of STRC increases evenly with the in crease of the ratio of STRC displacement efficiency to water displacement efficiency,and increases rapidly with the increase of the ratio of recovery degree at flooding mode conversion to the water displacement efficiency.STRC is more effective in increasing oil production of reservoir with high recovery degree.Through practical tests of the alkali free binary flooding(polymer/surfactant)projects,the relative error of the oil production calculation method of STRC reservoir is about±10%,which meets the requirements of reservoir engineering.展开更多
For the case of carbonate reservoir water flooding development, the flow field identification method based on streamline modeling result was proposed. The Ocean for Petrel platform was used to build the plug-in that e...For the case of carbonate reservoir water flooding development, the flow field identification method based on streamline modeling result was proposed. The Ocean for Petrel platform was used to build the plug-in that exported the streamline data, and the subsequent data was processed and clustered through Python programming, to display the flow field with different water flooding efficiencies at different time in the reservoir. We used density peak clustering as primary streamline cluster algorithm, and Silhouette algorithm as the cluster validation algorithm to select reasonable cluster number, and the results of different clustering algorithms were compared. The results showed that the density peak clustering algorithm could provide better identified capacity and higher Silhouette coefficient than K-means, hierachical clustering and spectral clustering algorithms when clustering coefficients are the same. Based on the results of streamline clustering method, the reservoir engineers can easily identify the flow area with quantification treatment, the inefficient water injection channels and area with developing potential in reservoirs can be identified. Meanwhile, streamlines between the same injector and producer can be subdivided to describe driving capacity distribution in water phase, providing useful information for the decision making of water flooding optimization, well pattern adjustment and deep profile modification.展开更多
基金This project is supported by the China National Key Basis Research Project (No: G1999022512)
文摘The processes of flooding—water flooding, polymer flooding and ternary combination flooding—were simulated respectively on a 2-D positive rhythm profile geological model by using the ASP numerical modeling software developed by RIPED (Yuan, et al. 1995). The recovery coefficient, remaining oil saturation, sweep efficiency and displacement efficiency were calculated and correlated layer by layer. The results show that the sweep efficiency and displacement efficiency work different effects on different layers in the severely heterogeneous reservoir. The study shows that the displacement efficiency and sweep efficiency play different roles in different layers for severely heterogeneous reservoirs. The displacement efficiency contributes mainly to the high permeability zones, the sweep efficiency to the low permeability zones, both of which contribute to the middle permeable zones. To improve the sweep efficiency in the low permeability zones is of significance for enhancing the whole recovery of the reservoir. It is an important path for improving the effectiveness of chemical flooding in the severely heterogeneous reservoirs to inject ternary combination slug after profile control.
基金supported by China National Key BasicResearch Development Program under grant 2006CB705805 entitled"Commercial Utilization of Greenhouse GasEnhanced Oil Recovery and Geological Storage:Study of Nonlinear Percolation Mechanisms of Multi-phase and Multi-component Mixtures of CO2 Flooding"National Key Sci-Tech Major Special Item under grant 2008ZX05009-004 entitled"The Development of Large-scale Oil and GasFields and Coal-bed Methane:New Technology on EnhancedOil Recovery in the Later Period of Oil Field Development".
文摘Carbon dioxide flooding is an effective means of enhanced oil recovery for low permeability reservoirs. If fractures are present in the reservoir, CO2 may flow along the fractures, resulting in low gas displacement efficiency. Reservoir pore pressure will fluctuate to some extent during a CO2 flood, causing a change in effective confining pressure. The result is rock deformation and a reduction in permeability with the reduction in fracture permeability, causing increased flow resistance in the fracture space. Simultaneously, gas cross flowing along the fractures is partially restrained. In this work, the effect of stress changes on permeability was studied through a series of flow experiments. The change in the flowrate distribution in a matrix block and contained fracture with an increase in effective pressure were analyzed. The results lead to an implicit comparison which shows that permeability of fractured core decreases sharply with an increase in effective confining pressure. The fracture flowrate ratio declines and the matrix flowrate ratio increases. Fracture flow will partially divert to the matrix block with the increase in effective confining pressure, improving gas displacement efficiency.
文摘Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.
基金support from the National Natural Science Foundation of China(52174034)the Sichuan Science and Technology Program(2021YFH0081).
文摘Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.
基金Financial support for this work from National Sciencetechnology Support Plan Projects (No. 2012BAC26B00)the Science Foundation of China University of Petroleum, Beijing (No.2462012KYJJ23)
文摘Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.
基金The authors greatly appreciate the financial support of the National Natural Science Foundation of China(Grant No.52104027)the Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2070)the Shandong Provincial Natural Science Foundation(Grant No.ZR2021ME072).
文摘The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.
基金supported by the Energy Efficiency&Resources(No.20212010200010)the“Development of Intelligential Diagnosis,Abandonment Process and Management Technology for Decrepit Oil and Gas Wells”(No.20216110100010)of the Korea Institute of Energy Technology EvaluationPlanning(KETEP)grant funded by the Korean Government Ministry of Trade,Industry&Energy.
文摘Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.
文摘The cow-calf (Bos taurus) industry in subtropical United States and other parts of the world that depends almost totally on grazed pastures is facing several production constraints like changing climatic conditions and increasing cost of fertilizers, especially nitrogen (N). Particularly little is known about the response of forage species to the combined effect of water-logging and the addition of N. A two-year greenhouse study was conducted in 2008 and 2009 to determine i) the effect of flooding duration on N recovery and agronomic efficiency of bahiagrass (Paspalum notatum Fluegge) compared with two flooding tolerant forages, limpograss (Hemarthria altissima Poir), and maidencane (Panicum hematomon Schult) and ii) if N fertilization could mitigate the negative effect of flooding. Nitrogen recovery and agronomic efficiency varied significantly (P ≤ 0.001) among forage species. Averaged across levels of N, N recovery of bahiagrass and limpograss was reduced by about 41% and 56%, respectively after 84 d of continued flooding while N recovery of maidencane was slightly increase by about 5% between 0 and 84 d of flooding. Agronomic efficiencies of bahiagrass (41% to 26%) and limpograss (44% to 31%) were reduced by flooding while agronomic efficiency of maidencane was increased from 24% (no flooding) to 46% at 84 d of continued flooding. However, N recovery and agronomic efficiency of three forage species was positively affected by N fertilization. The overall N recovery of bahiagrass, limpograss, and maidencane ranged from 44% to 59%. Nitrogen fertilization could improve N recovery and agronomic efficiency of forage species under waterlogged condition.
基金The authors gratefully acknowledge the financial support from the National Science and Technology Major Special Project(2016ZX05058-003).
文摘Due to long-term water injection,often oilfields enter the so-called medium and high water cut stage,and it is difficult to achieve good oil recovery and water reduction through standard methods(single profile control and flooding measures).Therefore,in this study,a novel method based on“plugging,profile control,and flooding”being implemented at the same time is proposed.To assess the performances of this approach,physical simulations,computer tomography,and nuclear magnetic resonance are used.The results show that the combination of a gel plugging agent,a polymer microsphere flooding agent,and a high-efficiency oil displacement agent leads to better results in terms of oil recovery with respect to the situation in which these approaches are used separately(the oil recovery is increased by 15.37%).Computer tomography scan results show that with the combined approach,a larger sweep volume and higher oil washing efficiency are obtained.The remaining oil in the cluster form can be recovered in the middle and low permeability layer,increasing the proportion of the columnar and blind end states of the oil.The nuclear magnetic resonance test results show that the combined“plugging,profile control,and flooding”treatment can also be used to control more effectively the dominant channels of the high permeability layer and further expand the recovery degree of the remaining oil in the pores of different sizes in the middle and low permeability layers.However,for the low permeability layer(permeability difference of 20),the benefits in terms of oil recovery are limited.
文摘A field experiment was conducted to study water use efficiency and agronomic traits in rice cultivated in flooded soil and non-flooded soils with and without straw mulching. The total amount of water used by rice under flooded cultivation (FC) was 2.42 and 3.31 times as much as that by rice under the non-flooded cultivation with and without straw mulching, respectively. The average water seepage was 13 560 m^3/ha under the flooded cultivation, 4 750 m^3/ha under the non-flooded cultivation without straw mulching (ZM) and 4 680 m^3/ha under non-flooded cultivation with straw mulching (SM). The evapotranspiration in the SM treatment was only 38.2% and 63.6% of the FC treatment and ZM treatment, respectively. Compared with the ZM treatment, straw mulching significantly increased leaf area per plant, main root length, gross root length and root dry weight per plant of rice. The highest grain yield under the SM treatment (6 747 kg/ha) was close to the rice cultivated in flooded soil (6 811.5 kg / ha). However, the yield under the ZM treatment (4 716 kg/ha) was much lower than that under the FS treatment and SM treatment. The order of water use efficiency and irrigation water use efficiency were both as follows: SM〉 ZM〉 FC.
基金supported by the National Natural Science Foundation of China (Nos.51205335, 51375411)the Scientific Research for the High Level Talent of Nanjing Institute of Technology (No.YKJ201702)
文摘An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The calculation method for the meshing efficiency of planetary transmission is analyzed and the equation of the meshing efficiency is deduced.Relationships between the meshing efficiency,the radius of the pin wheel and the eccentric distance are revealed.The design constraint quations and the strength constraint quations are deduced.On the basis of this,a design procedure is laid out.Some examples using different input parameters are conducted to demonstrate the feasibility of the approach.A dynamic simulation of the rigid flexible coupling of cycloid gears is also presented.The results show that the proposed design method is more flexible to control the tooth profiles by changing the input values of the transmission efficiency.
文摘To meet the requirements of improving the efficiency in lapping operat ion, the effect of lap surface profile on the efficiency is analyzed theoretical ly and an experimental study is carried out on lapping of Mn Zn ferrite. It is f ound that the profile of lap surface affects significantly the efficiency by mea ns of its capacity to keep loose grains and fixed grains during lapping, and tha t the efficiency can be increased by several times by using a lap with proper surface profile, while the same work surface roughness can be finally obtained.
文摘TCMs (traffic calming measures) are commonly installed in order to reduce speeds and volumes of traffic to acceptable levels and, thus, improve traffic safety as well as environmental impact when designed appropriately as a corridor or aerial implementation with proper spacing. Hence in many previous studies, their impact was mainly evaluated in scope of average and 85th percentile speed reduction. This paper presents and appraises the efficiency of calming measures of various types used in the city of Bialystok, Poland in terms of their influence zone. The assessment is based on speed profiles derived from individual test rides conducted with test vehicle equipped with GPS (global positioning system) data logger to obtain vehicle trajectory data. Speed measurements were conducted in vicinity of most commonly installed calming measures such as speed cameras, raised pedestrian crossing, raised intersection, speed bumps and speed cushion. The results reveal great differences within analysed devices and the usefulness of speed profiles in evaluation of their effectiveness. Speed bumps, most frequently used device in practice due to their low cost installation and speed reduction effectiveness, demonstrate lowest usefulness when influence zone is considered.
文摘This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).
基金financial support from the National Basic Research Program of China(2015CB251201)the Fundamental Research Funds for the Central Universities(15CX06024A)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294 and IRT1086)
文摘CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.
基金supported by the Natural Science Foundation of China(Grant numbers 31870465,31600377,31700462).
文摘In terrestrial ecosystems,deep soils(below 30 cm)are major organic carbon(C)pools.The labile carbon input could alter soil organic carbon(SOC)mineralization,resulting in priming effect(PE),which could be modified by nitrogen(N)availability,however,the underlying mechanism is unclear for deep soils,which complicates the prediction of deep soil C cycling in response to N deposition.A series of N applications with ^(13)C labeled glucose was set to investigate the effect of labile C and N on deep SOC mineralization.Microbial biomass,functional community,metabolic efficiency and enzyme activities were examined for their effects on SOC mineralization and PE.During incubation,glucose addition promoted SOC mineralization,resulting in positive PE.The magnitude of PE decreased significantly with increasing N.The N-regulated PE was not dependent on extracellular enzyme activities but was positively correlated with carbon use efficiency and negatively with metabolic quotient.Higher N levels resulted in higher microbial biomass and SOC-derived microbial biomass than lower N levels.These results suggest that the decline in the PE under high N availability was mainly controlled by higher microbial metabolic efficiency which allocated more C for growth.Structural equation modelling also revealed that microbial metabolic efficiency rather than enzyme activities was the main factor regulating the PE.The negative effect of additional N suggests that future N deposition could promote soil C sequestration.
文摘This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could reach ultra-low interracial tension and combination surfactant RZ-JD80 with strong emulsifying property are chosen to do oil displacement and profile control-oil displacement experiment in homogeneous core and heterogeneous core respectively. The experiment is aimed to study the effect of oil displacement by injecting surfactant individually and the effect after injecting different profile control agent slug before surfactant flooding in heterogeneous cores. The results suggest that injecting Rui Feng surfactant and RZ-JD80 individually could enhance the oil displacement efficiency about 15 percentage points for homogeneous core. For strongly heterogeneous core, it is low efficiency by using either of these two surfactants individually. However, if injected a very little profile control agent slug before surfactant flooding, both of these two kinds of surfactant could enhance the oil recovery by different degree, especially, polymer microsphere plugging^RZ-JD80 flooding composite technology is more adaptable to Gao-63 reservoir. This technology could increase the recovery by 18.52 percentage points aRer surfactant flooding.
文摘In this investigation, UniSim software and the Soave-Redlich-Kong (SRK) thermodynamic model were utilized to study flooding in a Naphta stripping column. The objective of this study was to evaluate the impact of increasing feed flowrate from a design load of 121 m</span><sup><span style="font-size:12px;font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/hr</span></span><span style="font-family:Verdana;">.</span><span style="font-family:""><span style="font-family:Verdana;"> to 165 m</span><sup><span style="font-size:12px;font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/hr</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> on the performance of the plate column. In order to study only flooding in the column, UniSim software was run by keeping the LPG (Liquefied Gas petroleum) and Naphta products within the required specifications. According to the original design specifications of the stripping column, it should not be operated at high feed rates and differential pressure must not exceed 600 mbar. For the purpose of simulation, this value corresponds to a maximum allowable flooding percentage of 85%. The simulation results show that the flooding percentage was 144.5% in the case under study and 83.7% for the design case. Flooding occurred in all parts of the column with diameters of 2 m and 2.7 m. For the case under investigation, the reflux to feed ratio was reduced from 0.45 (design case) to 0.2. The originality of this investigation is the utilization of the temperature profile in the column as a tool to detect the plates where flooding could take place. The column temperature profile during the case under study suggests instability in the plates between trays 5 to 15. It is therefore suspected that flooding takes place mainly between those plates</span><span style="font-family:Verdana;">.
基金Supported by the National Science and Technology Major Project of China (2016ZX05010).
文摘Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production level during the blank water flooding stage is proposed.According to the basic principle of reservoir engineering that the“recovery factor is equal to sweeping coefficient multiplied by oil displacement efficiency”,the formula for calculating the ultimate oil recovery factor of chemical combination flooding reservoir was established.By dividing the reservoir into a series of grids according to differen-tial calculus thinking,the relationship between the ultimate recovery factor of a certain number of grids and the recovery de-gree of the reservoir was established,and then the variation law of oil production rate of the STRC reservoir was obtained.The concept of“oil rate enlargement factor of chemical combination flooding”was defined,and a production calculation method of reservoir developed by STRC was put forward based on practical oilfield development experience.The study shows that the oil production enhancing effect of STRC increases evenly with the in crease of the ratio of STRC displacement efficiency to water displacement efficiency,and increases rapidly with the increase of the ratio of recovery degree at flooding mode conversion to the water displacement efficiency.STRC is more effective in increasing oil production of reservoir with high recovery degree.Through practical tests of the alkali free binary flooding(polymer/surfactant)projects,the relative error of the oil production calculation method of STRC reservoir is about±10%,which meets the requirements of reservoir engineering.
基金Supported by the the CNPC Science and Technology Innovation Fund Program(2017D-5007-0202)
文摘For the case of carbonate reservoir water flooding development, the flow field identification method based on streamline modeling result was proposed. The Ocean for Petrel platform was used to build the plug-in that exported the streamline data, and the subsequent data was processed and clustered through Python programming, to display the flow field with different water flooding efficiencies at different time in the reservoir. We used density peak clustering as primary streamline cluster algorithm, and Silhouette algorithm as the cluster validation algorithm to select reasonable cluster number, and the results of different clustering algorithms were compared. The results showed that the density peak clustering algorithm could provide better identified capacity and higher Silhouette coefficient than K-means, hierachical clustering and spectral clustering algorithms when clustering coefficients are the same. Based on the results of streamline clustering method, the reservoir engineers can easily identify the flow area with quantification treatment, the inefficient water injection channels and area with developing potential in reservoirs can be identified. Meanwhile, streamlines between the same injector and producer can be subdivided to describe driving capacity distribution in water phase, providing useful information for the decision making of water flooding optimization, well pattern adjustment and deep profile modification.