期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
1
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ... Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip. 展开更多
关键词 three-dimensional network on chip mapping al-gorithm quantum-behaved particle swarm optimization al-gorithm particle swarm optimization algorithm low powerconsumption
原文传递
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
2
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
原文传递
基于双策略协同进化的QPSO算法及其应用 被引量:2
3
作者 何光 卢小丽 李高西 《计算机应用研究》 CSCD 北大核心 2023年第2期418-423,共6页
为更好地提升量子粒子群优化算法(QPSO)的局部挖掘和全局搜索能力,提出了一种改进的QPSO算法(DSQPSO)。在改进算法中引入了双策略协同进化的思路调整粒子的位置更新公式。为充分体现个体粒子挖掘的优势和群体共同引导的特点,提出了两种... 为更好地提升量子粒子群优化算法(QPSO)的局部挖掘和全局搜索能力,提出了一种改进的QPSO算法(DSQPSO)。在改进算法中引入了双策略协同进化的思路调整粒子的位置更新公式。为充分体现个体粒子挖掘的优势和群体共同引导的特点,提出了两种吸引点构造的思路,做到个体和种群更好地融合以及信息的互通;分别考虑了最优平均位置与全局最优和粒子的历史最优之间的联系,对粒子搜索范围作出了重新定义;此外,在迭代过程中,借助随机扰动机制对全局最优位置进行调整,以保持种群的多样性。通过18个测试函数将DSQPSO算法与PSO、QPSO、RQPSO和LQPSO四种算法在收敛精度和鲁棒性方面进行对比;进而在两个具体的工程优化问题上,应用改进算法与八个智能算法进行了寻优结果比较。实验表明DSQPSO算法无论在基准测试中还是在工程应用上,其计算精度和收敛效果均有明显优势。 展开更多
关键词 量子粒子群优化算法 协同进化 局部吸引点 最优平均位置 工程应用
下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:1
4
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
下载PDF
基于QPSO-RBF的瓦斯涌出量预测模型 被引量:32
5
作者 潘玉民 邓永红 +1 位作者 张全柱 薛鹏骞 《中国安全科学学报》 CAS CSCD 北大核心 2012年第12期29-34,共6页
为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适... 为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适应值参数。其中,RBF网络选取5-3-1的精简结构,采用5个变量作为影响因子预测瓦斯涌出量。结果表明,经QPSO优化后的RBF网络模型预测结果稳定且唯一,其泛化指标平均相对变动值(ARV)为0.012 2。与PSO-RBF、RBF模型预测结果比较,QPSO-RBF模型的泛化能力和网络训练速度优于前2种;预测精度约为PSO-RBF模型的1.5倍、RBF模型的4倍。 展开更多
关键词 量子粒子群(qpso)算法 径向基(RBF) qpso-RBF模型 泛化能力 瓦斯涌出量
原文传递
基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:24
6
作者 陈伟 冯斌 孙俊 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络
下载PDF
基于QPSO的数据聚类 被引量:14
7
作者 龙海侠 须文波 孙俊 《计算机应用研究》 CSCD 北大核心 2006年第12期40-42,45,共4页
在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K-Means聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户... 在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K-Means聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户指定的聚类个数的聚类中心。聚类过程都是根据数据之间的Euclidean(欧几里得)距离。K-Means算法、PSO算法和QPSO算法的不同在于聚类中心向量的“进化”上。最后使用三个数据集比较了上面提到的五种聚类方法的性能,结果显示基于QPSO算法的数据聚类性能比一般PSO算法更好。 展开更多
关键词 聚类 K—Means PSO qpso 聚类中心
下载PDF
运用QPSO算法进行系统辨识的研究 被引量:15
8
作者 沈佳宁 孙俊 须文波 《计算机工程与应用》 CSCD 北大核心 2009年第9期67-70,共4页
引入了一种广泛而实用的方法——基于量子行为的粒子群算法的理论应用于系统辨识领域,QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。仿真实验结果表明,QPSO算法具有比GA算法及PSO算法更强的线性系统辨... 引入了一种广泛而实用的方法——基于量子行为的粒子群算法的理论应用于系统辨识领域,QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。仿真实验结果表明,QPSO算法具有比GA算法及PSO算法更强的线性系统辨识能力和非线性系统辨识能力。 展开更多
关键词 系统辨识 量子粒子群优化算法 线性系统 非线性系统 HAMMERSTEIN模型 WIENER模型
下载PDF
QPSO算法优化BP网络的网络流量预测 被引量:10
9
作者 冯华丽 刘渊 陈冬 《计算机工程与应用》 CSCD 2012年第3期102-104,共3页
网络流量预测对于大规模网络的规划设计和网络资源管理等方面都具有积极的意义,是网络流量工程重要组成部分。结合QPSO算法和BP神经网络的优势,采用QPSO算法对BP神经网络的权值和阈值进行优化,并利用历史记录训练BP网络。仿真实验表明,... 网络流量预测对于大规模网络的规划设计和网络资源管理等方面都具有积极的意义,是网络流量工程重要组成部分。结合QPSO算法和BP神经网络的优势,采用QPSO算法对BP神经网络的权值和阈值进行优化,并利用历史记录训练BP网络。仿真实验表明,与PSO训练的BP网络以及直接用BP网络进行预测的模型相比,基于QPSO训练的BP网络流量预测模型具有更好的预测能力。 展开更多
关键词 量子粒子群算法 粒子群算法 神经网络 网络流量 预测
下载PDF
MQPSO:一种具有多群体与多阶段的QPSO算法 被引量:8
10
作者 张春燕 须文波 +1 位作者 孙俊 管芳景 《计算机应用研究》 CSCD 北大核心 2007年第3期100-102,共3页
提出了一种改进的QPSO(Quantum-behaved Particle Swarm Optimization)算法,即一种具有多群体与多阶段的具有量子行为的粒子群优化算法。在该算法中,粒子被分为多个群体,利用多个阶段进行全局搜索,这样可以有效地避免粒子群早熟,提高了... 提出了一种改进的QPSO(Quantum-behaved Particle Swarm Optimization)算法,即一种具有多群体与多阶段的具有量子行为的粒子群优化算法。在该算法中,粒子被分为多个群体,利用多个阶段进行全局搜索,这样可以有效地避免粒子群早熟,提高了算法的全局收敛性能。对几个重要测试函数的测试结果证明,MQPSO算法的收敛性能优于标准粒子群算法(Standard Particle Swarm Optimization,SPSO)以及QPSO算法。 展开更多
关键词 粒子群算法 量子行为 全局收敛 早熟
下载PDF
用带变异因子的QPSO算法解决Job-Shop调度问题 被引量:11
11
作者 石锦风 冯斌 孙俊 《计算机工程与应用》 CSCD 北大核心 2008年第8期49-52,共4页
由于量子粒子群优化算法仍有可能会出现早熟现象,因此将变异机制引入量子粒子群优化算法以使算法跳出局部最优并增强其全局搜索能力,并将改进后的量子粒子群优化算法用于求解作业车间调度问题。仿真实例表明,该算法具有良好的全局收敛... 由于量子粒子群优化算法仍有可能会出现早熟现象,因此将变异机制引入量子粒子群优化算法以使算法跳出局部最优并增强其全局搜索能力,并将改进后的量子粒子群优化算法用于求解作业车间调度问题。仿真实例表明,该算法具有良好的全局收敛性能和快捷的收敛速度,调度效果优于遗传算法、粒子群优化算法和量子粒子群优化算法。 展开更多
关键词 变异机制 作业车间调度 遗传算法 粒子群优化算法 量子粒子群优化算法
下载PDF
基于QPSO算法的作业车间调度问题的研究 被引量:6
12
作者 冯斌 石锦风 孙俊 《计算机工程与设计》 CSCD 北大核心 2007年第23期5690-5693,5786,共5页
针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量... 针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量作为量子粒子群优化算法中的粒子进行进化,由此在解空间内搜索最优解。实例仿真结果表明,该算法收敛速度快、全局收敛性能好,可以得到比遗传算法、粒子群优化算法更佳的调度效果,证明了算法的有效性。 展开更多
关键词 遗传算法 群体智能算法 粒子群优化算法 量子粒子群优化算法 作业车间调度问题
下载PDF
一种基于改进QPSO的机器人路径规划算法 被引量:14
13
作者 胡章芳 孙林 +1 位作者 张毅 鲍合章 《计算机工程》 CAS CSCD 北大核心 2019年第4期281-287,共7页
针对量子行为粒子群优化(QPSO)算法在移动机器人路径规划中出现早熟收敛的问题,提出一种基于聚集度因子和阶段变异策略的改进QPSO算法。根据目标函数计算粒子的适应度值,在压缩扩张因子中引入改进聚集度因子划分搜索阶段,利用分阶段变... 针对量子行为粒子群优化(QPSO)算法在移动机器人路径规划中出现早熟收敛的问题,提出一种基于聚集度因子和阶段变异策略的改进QPSO算法。根据目标函数计算粒子的适应度值,在压缩扩张因子中引入改进聚集度因子划分搜索阶段,利用分阶段变异策略更新个体位置,并对算法进行性能测试。实验结果表明,与FE-PSO算法相比,该算法具有较高的收敛精度与较好的稳定性。 展开更多
关键词 路径规划 群智能算法 量子行为粒子群优化 聚集度因子 早熟收敛
下载PDF
基于QPSO算法的3D多模医学图像配准 被引量:4
14
作者 丁德武 李慧 +1 位作者 孙俊 须文波 《计算机工程与应用》 CSCD 北大核心 2011年第26期173-176,共4页
基于互信息的配准方法具有精度高、鲁棒性强的特点。但基于互信息的目标函数存在许多局部极值,给配准的优化过程带来了很大的困难。把量子行为的粒子群优化算法(QPSO)应用到了3D医学图像配准中。QPSO不仅参数个数少,其每一个迭代步的取... 基于互信息的配准方法具有精度高、鲁棒性强的特点。但基于互信息的目标函数存在许多局部极值,给配准的优化过程带来了很大的困难。把量子行为的粒子群优化算法(QPSO)应用到了3D医学图像配准中。QPSO不仅参数个数少,其每一个迭代步的取样空间能覆盖整个解空间,因此能保证算法的全局收敛。实验结果表明,该算法能够有效地克服互信息函数的局部极值,大大提高了配准精度,与美国Vanderbilt大学的"金标准"比较,达到了亚像素级的精度。 展开更多
关键词 图像配准 互信息 量子行为的粒子群优化算法
下载PDF
基于改进的QPSO训练BP网络的网络流量预测 被引量:11
15
作者 王鹏 刘渊 《计算机应用研究》 CSCD 北大核心 2009年第1期299-301,共3页
为了提高网络流量预测的精度,采用一种改进的QPSO算法训练BP神经网络对网络流量数据的时间序列进行建模预测。针对标准的QPSO算法不可避免地出现早熟的不足,提出一种新的基于参数自适应的QPSO算法,较好地避免了粒子群的早熟,提高了算法... 为了提高网络流量预测的精度,采用一种改进的QPSO算法训练BP神经网络对网络流量数据的时间序列进行建模预测。针对标准的QPSO算法不可避免地出现早熟的不足,提出一种新的基于参数自适应的QPSO算法,较好地避免了粒子群的早熟,提高了算法的全局收敛性能。仿真实验结果表明,与PSO训练的BP网络、QPSO训练的BP网络作为预测模型相比,该模型具有更高的预测精度及很好的稳定性。 展开更多
关键词 量子粒子群优化算法 粒子群优化算法 早熟 神经网络 网络流量预测
下载PDF
基于QPSO—RBF NN的混沌时间序列预测 被引量:7
16
作者 陈伟 冯斌 孙俊 《计算机应用研究》 CSCD 北大核心 2007年第5期68-70,共3页
提出一种基于量子粒子群优化算法训练径向基函数神经网络进行混沌时间序列预测的新方法。在确定径向基函数网络的隐层节点数后,将相应网络的参数,包括隐层基函数中心、扩展常数,以及输出权值和偏移编码成学习算法中的粒子个体,在全局空... 提出一种基于量子粒子群优化算法训练径向基函数神经网络进行混沌时间序列预测的新方法。在确定径向基函数网络的隐层节点数后,将相应网络的参数,包括隐层基函数中心、扩展常数,以及输出权值和偏移编码成学习算法中的粒子个体,在全局空间中搜索具有最优适应值的参数向量。实例仿真证实了该方法的有效性。 展开更多
关键词 混沌时间序列 预测 量子粒子群优化算法 径向基函数神经网络
下载PDF
基于QPSO的自适应均衡算法 被引量:3
17
作者 池越 刘剑飞 +1 位作者 陈国鹰 武睿 《河北科技大学学报》 CAS 北大核心 2009年第2期116-119,共4页
自适应均衡技术能有效地克服光纤信道的色散和光纤非线性等效应引起的符号间干扰。但传统的自适应均衡算法存在收敛速度慢、稳定性差、均衡效果不理想等缺点,从而使自适应均衡器在高速光纤通信系统中的应用受到限制。提出了一种基于QPS... 自适应均衡技术能有效地克服光纤信道的色散和光纤非线性等效应引起的符号间干扰。但传统的自适应均衡算法存在收敛速度慢、稳定性差、均衡效果不理想等缺点,从而使自适应均衡器在高速光纤通信系统中的应用受到限制。提出了一种基于QPSO的自适应均衡算法。仿真实验表明,QPSO具有收敛速度快、计算精度高等优点,将其作为自适应均衡器的控制算法可收到很好的均衡效果,优于传统的控制算法。 展开更多
关键词 光纤通信 自适应均衡 自适应算法 量子粒子群优化算法
下载PDF
基于权重QPSO算法的PID控制器参数优化 被引量:4
18
作者 周阳花 魏敏 孙伟 《计算机工程与应用》 CSCD 北大核心 2010年第5期224-228,共5页
传统的PID控制器参数优化方法容易产生振荡和较大的超调量,因此智能算法如遗传算法(SGA)和粒子群算法(PSO)被用于参数优化,弥补传统算法的不足,但是遗传算法在进化过程中收敛速度慢,粒子群算法存在易于早熟的缺点。在分析量子粒子群算法... 传统的PID控制器参数优化方法容易产生振荡和较大的超调量,因此智能算法如遗传算法(SGA)和粒子群算法(PSO)被用于参数优化,弥补传统算法的不足,但是遗传算法在进化过程中收敛速度慢,粒子群算法存在易于早熟的缺点。在分析量子粒子群算法(QPSO)的基础上,在算法中引入了权重系数,提出使用改进的量子粒子群算法(WQPSO)优化PID控制器参数。将改进量子粒子群算法与量子粒子群算法、粒子群算法通过benchmark测试函数进行了比较。最后,通过三个传递函数实例,分别使用Z-N、GA、PSO方法和改进的量子粒子群算法进行了PID控制器参数优化设计,并对结果进行了分析。 展开更多
关键词 量子粒子群算法 权重系数 PID控制器 参数优化
下载PDF
基于QPSO的单任务Agent联盟形成 被引量:7
19
作者 许波 余建平 《计算机工程》 CAS CSCD 北大核心 2010年第19期168-170,共3页
智能群体搜索算法在求解单任务Agent联盟时稳定性较差、收敛速度慢、全局寻优能力不强,因此采用优化的量子粒子群优化算法解决上述问题。利用群体历史优质解,在最优粒子变异的基础上,采用多种群并行搜索,防止陷入局部极值,并对粒子群进... 智能群体搜索算法在求解单任务Agent联盟时稳定性较差、收敛速度慢、全局寻优能力不强,因此采用优化的量子粒子群优化算法解决上述问题。利用群体历史优质解,在最优粒子变异的基础上,采用多种群并行搜索,防止陷入局部极值,并对粒子群进行筛选以加快粒子群的收敛速度。对比实验结果表明,该算法可以快速、高效地找出合适的Agent联盟,在运行时间和解的质量方面优于同类算法。 展开更多
关键词 AGENT联盟 量子粒子群优化算法 组合优化 多AGENT系统
下载PDF
基于QPSO-DGM和熵突变的装备安全性崩溃分析 被引量:4
20
作者 李超 王瑛 王强 《系统工程与电子技术》 EI CSCD 北大核心 2014年第8期1580-1585,共6页
针对装备安全事故的突发性、复杂性,从系统安全熵"流程-突变"角度构建灰色-熵突变模型进行安全性崩溃分析。提出了复杂装备系统安全熵、安全熵函数、安全熵势函数等概念,刻画复杂装备系统安全状态从稳定到崩溃的演化机理和过... 针对装备安全事故的突发性、复杂性,从系统安全熵"流程-突变"角度构建灰色-熵突变模型进行安全性崩溃分析。提出了复杂装备系统安全熵、安全熵函数、安全熵势函数等概念,刻画复杂装备系统安全状态从稳定到崩溃的演化机理和过程;建立了复杂装备系统安全熵函数的量子粒子群DGM(2,1)拟合模型,并以拟合值和实际值的灰关联度为适应度函数,提高模型拟合精度;构建装备系统安全熵尖点突变模型,给出安全性崩溃的灰色-熵突变判据算法。最后,以某型飞机主起落架控制系统为例,验证了模型的有效性,为定量判断装备系统安全状态提供了新的方法。 展开更多
关键词 熵突变 量子粒子群优化算法 DGM(2 1)模型 安全性崩溃 安全熵
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部