期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Effect of drying cracks on swelling and self-healing of bentonite-sand blocks used as engineered barriers for radioactive waste disposal
1
作者 Yu Tan Guangping Zhou +2 位作者 Huyuan Zhang Xiaoya Li Ping Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1776-1787,共12页
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to... Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks. 展开更多
关键词 Beishan groundwater chemistry Bentonite buffer Drying cracks High-level radioactive waste(HLW) SELF-HEALING SWELLING
下载PDF
A novel method for gamma spectrum analysis of low-level and intermediate-level radioactive waste 被引量:1
2
作者 Hui Yang Xin-Yu Zhang +4 位作者 Wei-Guo Gu Bing Dong Xue-Zhi Jiang Wen-Tao Zhou De-Zhong Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期199-213,共15页
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ... The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment. 展开更多
关键词 HPGe detector Low-level and intermediate-level radioactive waste Gamma spectrum analysis method Deconvolution method Continuous wavelet transform
下载PDF
Experimental study on the physico-mechanical properties of Tamusu mudstone — A potential host rock for high-level radioactive waste in Inner Mongolia of China 被引量:2
3
作者 Chen Lu Hongdan Yu +1 位作者 Honghui Li Weizhong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1901-1909,共9页
Tamusu mudstone, located in Bayin Gobi Basin in Inner Mongolia of China, has been selected as a potential host rock for high-level radioactive waste(HLW) disposal in China. A series of tests has been carried out, incl... Tamusu mudstone, located in Bayin Gobi Basin in Inner Mongolia of China, has been selected as a potential host rock for high-level radioactive waste(HLW) disposal in China. A series of tests has been carried out, including X-ray diffraction(XRD) tests, scanning electron microscopy(SEM) tests, disintegration tests, permeability tests and triaxial compression tests, to estimate the physico-mechanical properties of Tamusu mudstone in this work. The mineral composition of Tamusu mudstone was analyzed and it was considered as a stable rock due to its low disintegration rate, i.e. approximately 0.11%after several wet/dry cycles. Based on the results of permeability test, it was found that Tamusu mudstone has a low permeability, with the magnitude of about 10—20m^(2). The low permeability makes the mudstone well prevent nuclide migration and diffusion, and might be influenced by temperature.The triaxial tests show that Tamusu mudstone is a stiff mudstone with high compressive strength, which means that the excavation disturbed zone would be smaller compared to other types of mudstone due to construction and operation of HLW repositories. Finally, the properties of Tamusu mudstone were compared with those of Opalinus clay, Callovo-Oxfordian(COx) argillite, and Boom clay to further discuss the possibility of using Tamusu mudstone as a potential nuclear waste disposal medium. 展开更多
关键词 Tamusu mudstone Physico-mechanical properties High-level radioactive waste(HLW)repository Disintegration test Permeability test
下载PDF
NEW IDEAS AND METHODS ON GEOMECHANICAL SAFETY ANALYSIS OF TOXIC AND RADIOACTIVE WASTE REPOSITORIES IN SALT MINE 被引量:2
4
作者 Hou Zhengmeng1 Wu Wen2 (1Institure of Disposal Technology and Geomechanics,Technical University of Clausthal,Erzstrasse 20,38678 Clausthal-Zellerfeld,Germany) (2Key Laboratory of Rock and Soil Mechanics,Institute of Rock and Soil Mechanics,The Chinese Academy of Sciences, Wuhan 430071 China) 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2002年第11期1708-1713,共6页
In view of the need for geomechanical safety analysis of repositories in salt rock, failure criteria,creep rupture criteria,material models,pillar design methods and criteria for the assessment of barrier efficiency a... In view of the need for geomechanical safety analysis of repositories in salt rock, failure criteria,creep rupture criteria,material models,pillar design methods and criteria for the assessment of barrier efficiency as well as investigations of the interaction between hydraulics and mechanics for the case of uncontrolled flooded repositories are necessary. The introduction of damage mechanics and of the Hou/Lux material model including damages into geomechanical safety analysis of repositories in salt rock can reduce some previous deficits in knowledge and modelling. This article will be as a part of geotechnical assessment to introduce the Hou/Lux material model,a new concept of hydro-mechanical coupling and a pillar design method as well as criteria for the assessment of efficiency of geological barriers. 展开更多
关键词 new ideas and methods toxic and radioactive waste safety analysis salt mine
下载PDF
Environmental impact of radionuclide migration in groundwater from a low intermediate level radioactive waste repository
5
《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第2期180-184,共5页
关键词 intermediate level radioactive waste repository Environmental impact of radionuclide migration in groundwater from a low
下载PDF
Indonesia’s Local Material Effect in Clay-Based Ceramic Filter Fabrication as an Alternative for Liquid Radioactive Waste Processing Material
6
作者 Widya Rosita Ferdiansjah +2 位作者 Antonius Wisnu Yogha Pamungkas Tri Joko Prihatin 《Materials Sciences and Applications》 2016年第7期371-379,共10页
One of the procedures to handle liquid radioactive waste is by filtration process. To do this process, suitable filter should be used because of radioactive nature of the waste. Ceramic filter is one of the suitable f... One of the procedures to handle liquid radioactive waste is by filtration process. To do this process, suitable filter should be used because of radioactive nature of the waste. Ceramic filter is one of the suitable filters that could be used for this purpose. This paper will discuss about producing ceramic filter from local clay and test its performance. Performance of the filter is given by its flux, compressive strength, Decontamination Factor (DF) and adsorption efficiency. The results show that there are almost no effects of casting pressure on both flux and compressive strength of ceramic filter, but zeolite addition produces different effect. The higher concentration of zeolite will decrease the filter flux and increase filter compressive strength. The optimal composition from this research is 70% w/o clay-25% w/o zeolite-5% w/o charcoal. It has adsorption efficiency (60.36) and Decontamination Factor (2.52). Besides, Sr concentration after filtration is still higher than environmental standard for Sr-90 and more studies are still needed. 展开更多
关键词 Local Clay ZEOLITE Charcoal FILTER radioactive waste
下载PDF
Potential application of graphene oxide and Aspergillus niger spores with high adsorption capacity for recovery of europium from red phosphor,compact fluorescent lamp and simulated radioactive waste
7
作者 B.Arunraj Vidya Rajesh N.Rajesh 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第1期157-166,共10页
The recovery of rare earth elements(REEs) is a global challenge and the mining of rare earths has serious environmental implications due to the toxic waste released post mining.Hence,the rising demand for rare earths ... The recovery of rare earth elements(REEs) is a global challenge and the mining of rare earths has serious environmental implications due to the toxic waste released post mining.Hence,the rising demand for rare earths and their far reaching electronic applications necessitates an effective strategy to recover the REEs from more viable sources.In this work,the graphene oxide-Aspergillus niger spores(GO-A.niger spores) blend was utilized for adsorptive recovery of a precious rare earth Eu(Ⅲ) and the adsorption variables like pH of the medium,adsorbent dosage,sorption kinetics,thermodynamics,and isotherm were optimized for the developed bioso rbent.The adsorption process suits the Langmuir isotherm model with a maximum adsorption capacity of 147.3 mg/g.The pseudo-second-order kinetics is a perfect fit to describe the adsorption process.The results obtained through the Van’t Hoff plot show negative free energy change(ΔG^(0)) which implies the spontaneity of the adsorption process.The negative standard enthalpy change(ΔH^(0)) values show that the nature of the adsorption process is exothermic.The analytical characterizations including Fourier transform infrared spectroscopy(FTIR),Raman,X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Brunauer-Emmett-Teller(BET),thermal gravimetric analysis(TGA),and scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX) were employed to study the biosorbent.The features of GO-A.niger spores biosorbent were applied to recover Eu(Ⅲ) from real samples such as fluorescent lamp phosphor,red phosphor powder,and a simulated radioactive waste solution. 展开更多
关键词 EUROPIUM Graphene oxide Aspergillus niger PHOSPHOR radioactive waste Rare earths
原文传递
Disposal of high-level radioactive waste in crystalline rock: On coupled processes and site development
8
作者 Liangchao Zou Vladimir Cvetkovic 《Rock Mechanics Bulletin》 2023年第3期44-56,共13页
Safe disposal of high-level radioactive nuclear waste(HLW)is crucial for human health and the environment,as well as for sustainable development.Deep geological disposal in sparsely fractured crystalline rock is consi... Safe disposal of high-level radioactive nuclear waste(HLW)is crucial for human health and the environment,as well as for sustainable development.Deep geological disposal in sparsely fractured crystalline rock is considered one of the most favorable methods for final disposal of HLW.Extensive research has been conducted worldwide and many countries have initiated their own national development programs for deep geological disposal.Significant advancements of national programs for deep geological disposal of HLW in crystalline rock have been achieved in Sweden and Finland,which are currently under site development stage,focusing on detailed site characterization,repository construction,and post-closure safety analysis.Continued research and development remain important in the site development stage to ensure long-term safety of the HLW disposal repository.This work presents an overview and discussion of the progress as well as remaining open scientific issues and possibilities related to site development for safe disposal of HLW in crystalline rock.We emphasize that developing a comprehensive and convergent understanding of the coupled thermal,hydraulic,mechanical,chemical and biological(THMCB)processes in fractured crystalline rock remains the most important yet challenging topic for future studies towards safe disposal of HLW in crystalline rock.Advancements in laboratory facilities/techniques and computational models,as well as available comprehensive field data from site developments,provide new opportunities to enhance our understanding of the coupled processes and thereby repository design for safe geological disposal of HLW in crystalline rock. 展开更多
关键词 High-level radioactive waste disposal Fractured crystalline rock Safety assessment Site characterization Site construction Post-closure safety
下载PDF
Ceramics for high level radioactive waste solidification 被引量:6
9
作者 Li WANG Tongxiang LIANG 《Journal of Advanced Ceramics》 SCIE CAS 2012年第3期194-203,共10页
Several countries reprocess their nuclear spent fuel using the Purex process to recover U and Pu as MOX fuel.The high level radioactive waste(HLW)produced during this reprocessing is a complex mixture containing both ... Several countries reprocess their nuclear spent fuel using the Purex process to recover U and Pu as MOX fuel.The high level radioactive waste(HLW)produced during this reprocessing is a complex mixture containing both radioactive(fission products,minor actinides)and non-radioactive elements.Since HLW shows high rate heat release and contains some long half-life and biologically toxic radionuclide,its treatment and disposal technology is complex,difficult and high cost.HLW treatment and disposal become a worldwide challenge and research focus.In order to minimize the potential long-term impact of HLW,studies on enhanced chemical separation processes of long-lived radionuclides are in progress.Two options are then envisaged for these separated radionuclides:(a)transmutation into short-lived or non-radioactive elements,(b)immobilization in highly durable ceramic matrix instead of borosilicate glass.In this paper,we briefly review the composition,structure,processing and product properties of some ceramic candidates for inert matrix fuels(IMF)and the immobilization of high level radioactive waste. 展开更多
关键词 nuclear spent fuel ceramic immobilization TRANSMUTATION high level radioactive waste
原文传递
Excavation of underground research laboratory ramp in granite using tunnel boring machine: Feasibility study 被引量:7
10
作者 Hongsu Ma Ju Wang +3 位作者 Ke Man Liang Chen Qiuming Gong Xingguang Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1201-1213,共13页
Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for... Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 Underground research laboratory(URL) High-level radioactive waste(HLW)disposal Tunnel boring machine(TBM) Extremely hard rock mass Rock mass boreability Spiral layout Beishan
下载PDF
Estimation of Fracture Geometry Parameters and Characterization of Rock Mass Structure for the Beishan Area,China 被引量:1
11
作者 WEI Xiang GUO Ying +4 位作者 CHENG Hanlie WEI Jianfei ZHANG Linlin HUO Liang HOU Zhenkun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1381-1392,共12页
The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,... The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal. 展开更多
关键词 fracture geometry parameters rock mass structure high-level radioactive waste disposal RMSR Beishan area
下载PDF
Activation and Environmental Aspects of In-Vacuum Vessel Components of CFETR 被引量:1
12
作者 张小康 刘松林 +2 位作者 祝庆军 高芳芳 李佳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第11期1130-1138,共9页
The water-cooled ceramic breeder(WCCB) blanket is one of the three candidates of China's Fusion Engineering Test Reactor(CFETR). The evaluation of the radioactivity and decay heat produced by neutrons for the in-v... The water-cooled ceramic breeder(WCCB) blanket is one of the three candidates of China's Fusion Engineering Test Reactor(CFETR). The evaluation of the radioactivity and decay heat produced by neutrons for the in-vacuum vessel components is essential for the assessment of radioactive wastes and the safety of CFETR. The activation calculation of CFETR in-vacuum vessel components was carried out by using the Monte Carlo N-Particle Transport Code MCNP, IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, and the nuclear inventory code FISPACT-2007 and corresponding EAF-2007 libraries. In these analyses, the three-dimensional(3-D) neutronics model was employed and the WCCB blanket, the divertor, and the shield were modeled in detail to provide the detailed spatial distribution of the neutron flux and energy spectra. Then the neutron flux, energy spectra and the materials specification were transferred to FISPACT for the activation calculation with an assumed irradiation scenario of CFETR. This paper presents the main results of the activation analysis to evaluate the radioactivity, the decay heat, the contact dose, and the waste classification of the radioactive materials. At the time of shutdown, the activity of the WCCB blanket is 1.88×10^(19)Bq and the specific activity, the decay heat and the contact dose rate are 1.7×10^(13)Bq/kg, 3.05 MW, and 2.0×10~3Sv/h respectively. After cooling for 100 years, 79%(4166.4 tons) radioactive wastes produced from the blanket, divertor,high temperature shield(HTS) and low temperature shield(LTS) need near surface disposal, while21%(1112.3 tons) need geological disposal. According to results of the contact dose rate, all the components of the blanket, divertor, HTS and LTS could potentially be recycled after shutdown by using advanced remote handling equipment. In addition, the selection of Eurofer97 or RAFM for the divertor is better than that of SS316 because SS316 makes the activity of the divertor-body keep at a relatively high level. 展开更多
关键词 CFETR BLANKET ACTIVATION radioactive waste
下载PDF
Distribution characteristics of tritium in the soil in Beishan area of Gansu Province
13
作者 LI Jie-biao SU Rui +4 位作者 YANG Jing-zhi ZHOU Zhi-chao JI Rui-li ZHANG Ming GAO Yu-feng 《Journal of Groundwater Science and Engineering》 2016年第2期131-140,共10页
Beishan region in Gansu was the preselected area for China's high-level radioactive waste(HLW) repository. In selecting and evaluating a new dump site, the tritium study is of great significance. The Xinchang-Xian... Beishan region in Gansu was the preselected area for China's high-level radioactive waste(HLW) repository. In selecting and evaluating a new dump site, the tritium study is of great significance. The Xinchang-Xiangyangshan preselected area in the Beishan area was taken as an example. This paper selects typical unit and tries to use the distribution characteristics of tritium in the soil to study the atmospheric precipitation infiltration recharge in this area. The results show: In this region, the spatial variability of the tritium content in surface soil is large; it is feasible to use bound tritium tracer method to study the theory of atmospheric precipitation infiltration recharge; the atmospheric precipitation infiltration has close relationship with the soil particle composition, salt content, mineral composition, water content and organic matter content. These results can provide important basis for developing the atmospheric precipitation infiltration recharge, groundwater numerical simulation, nuclide migration study and so on. 展开更多
关键词 Tritium Atmospheric precipitation infiltration Free water tritium Bound tritium High-level radioactive waste
下载PDF
China's progress in radionuclide migration study over the past decade(2010–2021):Sorption,transport and radioactive colloid 被引量:1
14
作者 Zongyuan Chen Siyuan Wang +7 位作者 Huijuan Hou Kang Chen Pengyuan Gao Zhen Zhang Qiang Jin Duoqiang Pan Zhijun Guo Wangsuo Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第7期3405-3412,共8页
The radionuclide(RN)migration study is not only helpful to understand environmental behavior of RNs,but also can establish the basis for the safety assessment of geological disposal of high-level radioactive waste(HLW... The radionuclide(RN)migration study is not only helpful to understand environmental behavior of RNs,but also can establish the basis for the safety assessment of geological disposal of high-level radioactive waste(HLW).In the context of China’s HLW disposal,this review briefly summaries the progress of China’s RN migration studies over the past decade regarding three aspects,RN sorption,RN transport and radioactive colloid.Domestic studies from other disciplines(such as geology and environmental science)are also included in this review because they can provide references for the RN migration study.Overall,China has achieved clear progress in RN migration study over the past decade,although large-scaled field experiments are lacked and a gap still exists comparing with the international advanced level.Finally,several suggestions are proposed for future RN migration research in China. 展开更多
关键词 High-level radioactive waste SORPTION TRANSPORT COLLOID Spectroscopic analysis Theoretical calculation
原文传递
Current status of the geological disposal programme and an overview of the safety case at the pre-siting stage in Japan
15
作者 Tetsuo Fujiyama Kenichi Kaku 《Rock Mechanics Bulletin》 2023年第3期78-92,共15页
In Japan,high-level radioactive waste and specific low-level radioactive waste which includes long-lived radionuclides are planned to be disposed of in the geological formations at depths greater than 300 m.The dispos... In Japan,high-level radioactive waste and specific low-level radioactive waste which includes long-lived radionuclides are planned to be disposed of in the geological formations at depths greater than 300 m.The disposal site will be selected through a stepwise site investigation process that consists of a Literature Survey,Preliminary Investigation,and Detailed Investigation phases.In October 2020 a Literature Survey was launched in Japan at two municipalities in Hokkaido for the first time since NUMO initiated a nationwide call for volunteer municipalities in 2002,and the outcomes are currently being compiled.To enhance the public’s understanding of how to implement safe geological disposal in Japan based on the latest scientific knowledge and technology,NUMO,as the implementing organisation,developed and published a safety case for geological disposal at the pre-siting stage.This safety case provides multiple lines of arguments and evidence to demonstrate the feasibility of the geological disposal and a basic structure for a safety case that will be applicable to any potential sites in Japan.The safety case also presented some R&D challenges to enhance the technical confidence of the project,including the R&D topics related to rock mechanics.This report presents the current status of the geological disposal programme in Japan,together with the status of the Literature Survey phase and an overview of the NUMO safety case. 展开更多
关键词 High-level radioactive waste TRU waste Geological disposal Site selection process Literature survey Safety case
下载PDF
KAERI underground research laboratory: Overview of in-situ experiments
16
作者 Ji-Won Kim Jin-Seop Kim +3 位作者 Changsoo Lee Sangki Kwon Nak-Youl Ko Geon Young Kim 《Rock Mechanics Bulletin》 2023年第3期119-129,共11页
Social concerns regarding the safety of high-level radioactive waste have increased with growing public awareness of environmental issues and nuclear power.The performance assessment of deep geological disposal system... Social concerns regarding the safety of high-level radioactive waste have increased with growing public awareness of environmental issues and nuclear power.The performance assessment of deep geological disposal systems is crucial to reduce the uncertainties associated with high-level radioactive waste disposal and enhance the overall public confidence in nuclear safety.Accordingly,the Korea Atomic Energy Research Institute(KAERI)has undertaken various studies on the development of a deep geological disposal system for high-level waste and disposal safety evaluation.The KAERI Underground Research Tunnel(KURT),South Korea's only underground research laboratory dedicated to radioactive waste disposal,was constructed in 2006 and expanded in 2015.Since its construction,numerous in-situ experiments have been conducted and are currently underway in the KURT.The KURT plays a significant role in assessing the feasibility,safety,stability and appropriateness of a deep geological disposal system in South Korea and also provides an opportunity to revitalize industrial-academic-scientific cooperation between related institutions.This report summarizes two key in-situ experiments and international joint research conducted between 2007 and 2017 to assess the performance of the engineered and natural barriers of the KURT.The research experiences from the in-situ tests conducted at the KURT will provide crucial information on the safety and feasibility validation of the deep geological disposal system and will be an important contributor to the success of the Korean high-level radioactive waste disposal program in the future. 展开更多
关键词 Underground research laboratory(URL) KAERI underground research laboratory (KURT) High-level radioactive waste disposal Engineered barrier system Natural barrier system
下载PDF
Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr^(2+) removal from aqueous solution
17
作者 Junye Cheng Kaili Liu +4 位作者 Xin Li Lei Huang Jie Liang Guangping Zheng Guangcun Shan 《Environmental Science and Ecotechnology》 2020年第3期13-22,共10页
The sorption removal of radionuclides Sr^(2+) using a freestanding functional membrane is an interesting and significant research area in the remediation of radioactive wastes.Herein,a novel self-assembled membrane co... The sorption removal of radionuclides Sr^(2+) using a freestanding functional membrane is an interesting and significant research area in the remediation of radioactive wastes.Herein,a novel self-assembled membrane consisting of metaleorganic framework(MOF)nanobelts and graphene oxides(GOs)are synthesized through a simple and facile filtration method.The membrane possesses a unique interwove morphology as evidenced from SEM images.Batch experiments suggest that the GO/Ni-MOF composite membrane could remove Sr^(2+) ions from aqueous solutions and the Sr^(2+) adsorption capacity and efficiency of the GO/Ni-MOF composite membrane is relevant to the MOF content in the composite.Thus,the dominant interaction mechanism was interface or surface complexation,electrostatic interaction as well as ion substitution.The maximum effective sorption of Sr^(2+) over GO/Ni-MOF membrane is 32.99% with 2 mg composite membrane containing a high content of Ni-MOF at 299 K in 100 mg/L Sr^(2+) aqueous solution.The FT-IR and XPS results suggest that the synergistic effect between GO and Ni-MOF is determinant in the sorption Sr^(2+) process.The GO/Ni-MOF composite membrane is demonstrated to have the advantages of efficient removal of Sr^(2+),low cost and simple synthesis route,which is promising in the elimination of radionuclide contamination. 展开更多
关键词 Metaleorganic framework(MOF)nanobelts Graphene oxide radioactive waste Strontium ions Adsorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部