In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
With the aid of computerized symbolic computation and Riccati equation rational expansion approach, some new and more general rational formal solutions to (2+1)-dimensional Toda system are obtained. The method used...With the aid of computerized symbolic computation and Riccati equation rational expansion approach, some new and more general rational formal solutions to (2+1)-dimensional Toda system are obtained. The method used here can also be applied to solve other nonlinear differential-difference equation or equations.展开更多
An oblique edge crack problem in a semi-infinite plane is discussed. Re concentrated forces are applied on the edge crack face, or on the line boundary of the cracked semi-infinite plane. The rational mapping function...An oblique edge crack problem in a semi-infinite plane is discussed. Re concentrated forces are applied on the edge crack face, or on the line boundary of the cracked semi-infinite plane. The rational mapping function approach is suggested to solve the boundary value problem and a solution in a closed form is obtained. Finally, several numerical examples with the calculated results are given.展开更多
Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple paramete...Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple parameter functions to solve these equations and obtain many families of new explicit exact solutions with multiple parameter functions. Moreover, symmetry transformations are used to simplify our arguments. The technique of moving frame is applied in the three-dimensional case in order to capture the rotational properties of the fluid. In particular, we obtain a family of solutions singular on any moving surface, which may be used to study turbulence. Many other solutions are analytic related to trigonometric and hyperbolic functions, which reflect various wave characteristics of the fluid. Our solutions may also help engineers to develop more effective algorithms to find physical numeric solutions to practical models.展开更多
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province.
文摘With the aid of computerized symbolic computation and Riccati equation rational expansion approach, some new and more general rational formal solutions to (2+1)-dimensional Toda system are obtained. The method used here can also be applied to solve other nonlinear differential-difference equation or equations.
文摘An oblique edge crack problem in a semi-infinite plane is discussed. Re concentrated forces are applied on the edge crack face, or on the line boundary of the cracked semi-infinite plane. The rational mapping function approach is suggested to solve the boundary value problem and a solution in a closed form is obtained. Finally, several numerical examples with the calculated results are given.
基金Supported by National Natural Science Foundation of China (Grant No. 10871193)
文摘Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple parameter functions to solve these equations and obtain many families of new explicit exact solutions with multiple parameter functions. Moreover, symmetry transformations are used to simplify our arguments. The technique of moving frame is applied in the three-dimensional case in order to capture the rotational properties of the fluid. In particular, we obtain a family of solutions singular on any moving surface, which may be used to study turbulence. Many other solutions are analytic related to trigonometric and hyperbolic functions, which reflect various wave characteristics of the fluid. Our solutions may also help engineers to develop more effective algorithms to find physical numeric solutions to practical models.