Boron nitride nanotubes(BNNTs)were treated as brittle materials and could be used to enhance the composite mechanical properties.Many approaches were used to verify the theoretical prediction experimentally,but how to...Boron nitride nanotubes(BNNTs)were treated as brittle materials and could be used to enhance the composite mechanical properties.Many approaches were used to verify the theoretical prediction experimentally,but how to in situ real-time characterize nanomechanical properties of BNNTs was still interested to the researchers.An in situ transmission electron microscopy(TEM)equipped with a force transducer holder had been used to study the structure evolution behavior of BNNTs with axial compression.Real-time video and the force transducer had been used synchronously to record the whole force loading process where the mechanical deformation of BNNT began,buckled and ended with fracture.An in dividual ultrathin BNNT was employed to con duct the loading test.The results showed that the elastic deformation happened on the BNNT.Young's modulus?1.05-1.37 Tpa and elasticity coefficient?198.7-255.9 N/m of BNNT were calculated by Euler formula and Hooker's law,respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos. 51573201, 21773205, 51501209 and 201675165)Key R&D Program of Yunnan Province(No. 2018BA068)+7 种基金NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(No. U1709205)National Key R&D Program of China(No. 2017YFB0406000)the Project of the Chinese Academy of Sciences(Nos. YZ201640 and KFZD-SW409)Public Welfare Project of Zhejiang Province (No. 2016C31026)Science and Technology Major Project of Ningbo (Nos.2016B10038 and 2016S1002)International S&T Cooperation Program of Ningbo(No. 2017D10016)the 3315 Program of Ningbo for financial supportthe financial support by the Science and Technology Major Project of Ningbo (No. 2015S1001)
文摘Boron nitride nanotubes(BNNTs)were treated as brittle materials and could be used to enhance the composite mechanical properties.Many approaches were used to verify the theoretical prediction experimentally,but how to in situ real-time characterize nanomechanical properties of BNNTs was still interested to the researchers.An in situ transmission electron microscopy(TEM)equipped with a force transducer holder had been used to study the structure evolution behavior of BNNTs with axial compression.Real-time video and the force transducer had been used synchronously to record the whole force loading process where the mechanical deformation of BNNT began,buckled and ended with fracture.An in dividual ultrathin BNNT was employed to con duct the loading test.The results showed that the elastic deformation happened on the BNNT.Young's modulus?1.05-1.37 Tpa and elasticity coefficient?198.7-255.9 N/m of BNNT were calculated by Euler formula and Hooker's law,respectively.