期刊文献+
共找到16,775篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Relationship Between Average Cigarette Price per Box and Government Procurement in City A Based on a Regression Model
1
作者 Yao Nie Hongbo Wan Mingming Mao 《Proceedings of Business and Economic Studies》 2024年第5期68-72,共5页
This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By re... This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By reviewing relevant theories and literature,qualitative prediction methods,regression prediction models,and other related theories were explored.Through the analysis of annual cigarette sales data and government procurement data in City A,a comprehensive understanding of the development of the tobacco industry and the economic trends of tobacco companies in the county was obtained.By predicting and analyzing the average price per box of cigarette sales across different years,corresponding prediction results were derived and compared with actual sales data.The prediction results indicate that the correlation coefficient between the average price per box of cigarette sales and government procurement is 0.982,implying that government procurement accounts for 96.4%of the changes in the average price per box of cigarettes.These findings offer an in-depth exploration of the relationship between the average price per box of cigarettes in City A and government procurement,providing a scientific foundation for corporate decision-making and market operations. 展开更多
关键词 Cigarette marketing regression model Predictive model Government purchasing
下载PDF
A Hybrid Model Evaluation Based on PCA Regression Schemes Applied to Seasonal Precipitation Forecast
2
作者 Pedro M. González-Jardines Aleida Rosquete-Estévez +1 位作者 Maibys Sierra-Lorenzo Arnoldo Bezanilla-Morlot 《Atmospheric and Climate Sciences》 2024年第3期328-353,共26页
Possible changes in the structure and seasonal variability of the subtropical ridge may lead to changes in the rainfall’s variability modes over Caribbean region. This generates additional difficulties around water r... Possible changes in the structure and seasonal variability of the subtropical ridge may lead to changes in the rainfall’s variability modes over Caribbean region. This generates additional difficulties around water resource planning, therefore, obtaining seasonal prediction models that allow these variations to be characterized in detail, it’s a concern, specially for island states. This research proposes the construction of statistical-dynamic models based on PCA regression methods. It is used as predictand the monthly precipitation accumulated, while the predictors (6) are extracted from the ECMWF-SEAS5 ensemble mean forecasts with a lag of one month with respect to the target month. In the construction of the models, two sequential training schemes are evaluated, obtaining that only the shorter preserves the seasonal characteristics of the predictand. The evaluation metrics used, where cell-point and dichotomous methodologies are combined, suggest that the predictors related to sea surface temperatures do not adequately represent the seasonal variability of the predictand, however, others such as the temperature at 850 hPa and the Outgoing Longwave Radiation are represented with a good approximation regardless of the model chosen. In this sense, the models built with the nearest neighbor methodology were the most efficient. Using the individual models with the best results, an ensemble is built that allows improving the individual skill of the models selected as members by correcting the underestimation of precipitation in the dynamic model during the wet season, although problems of overestimation persist for thresholds lower than 50 mm. 展开更多
关键词 Seasonal Forecast Principal Component regression Statistical-Dynamic models
下载PDF
Modeling of Total Dissolved Solids (TDS) and Sodium Absorption Ratio (SAR) in the Edwards-Trinity Plateau and Ogallala Aquifers in the Midland-Odessa Region Using Random Forest Regression and eXtreme Gradient Boosting
3
作者 Azuka I. Udeh Osayamen J. Imarhiagbe Erepamo J. Omietimi 《Journal of Geoscience and Environment Protection》 2024年第5期218-241,共24页
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ... Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large. 展开更多
关键词 Water Quality Prediction Predictive modeling Aquifers Machine Learning regression eXtreme Gradient Boosting
下载PDF
Utilization of Logistical Regression to the Modified Sine-Gordon Model in the MST Experiment
4
作者 Nizar J. Alkhateeb Hameed K. Ebraheem Eman M. Al-Otaibi 《Open Journal of Modelling and Simulation》 2024年第2期43-58,共16页
In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob... In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST. 展开更多
关键词 Madison Symmetric Torus (MST) Magnetohydrodyamic (MHD) SINE-GORDON TOROIDAL Dynamic modelling Reversed Field Pinch (RFP) Logistical regression
下载PDF
COVID‑19 and tourism sector stock price in Spain:medium‑term relationship through dynamic regression models 被引量:1
5
作者 Isabel Carrillo‑Hidalgo Juan Ignacio Pulido‑Fernández +1 位作者 JoséLuis Durán‑Román Jairo Casado‑Montilla 《Financial Innovation》 2023年第1期257-280,共24页
The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest touris... The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector. 展开更多
关键词 COVID-19 Stock exchange Tourism stock Dynamic regression models Spain
下载PDF
Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data 被引量:1
6
作者 WANG Fengfei TANG Shengjin +3 位作者 SUN Xiaoyan LI Liang YU Chuanqiang SI Xiaosheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期247-258,共12页
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n... Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction. 展开更多
关键词 remaining useful life(RUL)prediction imperfect prior information failure time data NONLINEAR random coefficient regression(RCR)model
下载PDF
Quantum Fuzzy Regression Model for Uncertain Environment
7
作者 Tiansu Chen Shi bin Zhang +1 位作者 Qirun Wang Yan Chang 《Computers, Materials & Continua》 SCIE EI 2023年第5期2759-2773,共15页
In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which us... In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation.In this paper,data envelopment analysis(DEA)is used to calculate the degree of importance of each data point.Meanwhile,Harrow,Hassidim and Lloyd(HHL)algorithm and quantum swap circuits are used to improve the efficiency of high-dimensional data matrix calculation.The application of the quantum fuzzy regression model to smallscale financial data proves that its accuracy is greatly improved compared with the quantum regression model.Moreover,due to the introduction of quantum computing,the speed of dealing with high-dimensional data matrix has an exponential improvement compared with the fuzzy regression model.The quantum fuzzy regression model proposed in this paper combines the advantages of fuzzy theory and quantum computing which can efficiently calculate high-dimensional data matrix and complete parameter estimation using quantum computing while retaining the uncertainty in big data.Thus,it is a new model for efficient and accurate big data processing in uncertain environments. 展开更多
关键词 Big data fuzzy regression model uncertain environment quantum regression model
下载PDF
Modeling Cyber Loss Severity Using a Spliced Regression Distribution with Mixture Components
8
作者 Meng Sun 《Open Journal of Statistics》 2023年第4期425-452,共28页
Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the... Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed. 展开更多
关键词 Cyber Risk Data Breach Spliced regression model Finite Mixture Distribu-tion Cluster Analysis Expectation-Maximization Algorithm Extreme Value Theory
下载PDF
Integrating Multiple Linear Regression and Infectious Disease Models for Predicting Information Dissemination in Social Networks
9
作者 Junchao Dong Tinghui Huang +1 位作者 Liang Min Wenyan Wang 《Journal of Electronic Research and Application》 2023年第2期20-27,共8页
Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model int... Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends. 展开更多
关键词 Social networks Epidemic model Linear regression model
下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
10
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization Logistic regression model K-Means Clustering Analysis Elbow Rule Parameter Verification
下载PDF
Prediction of cyanotic and acyanotic congenital heart disease using machine learning models
11
作者 Sana Shahid Haris Khurram +2 位作者 Apiradee Lim Muhammad Farhan Shabbir Baki Billah 《World Journal of Clinical Pediatrics》 2024年第4期15-24,共10页
BACKGROUND Congenital heart disease is most commonly seen in neonates and it is a major cause of pediatric illness and childhood morbidity and mortality.AIM To identify and build the best predictive model for predicti... BACKGROUND Congenital heart disease is most commonly seen in neonates and it is a major cause of pediatric illness and childhood morbidity and mortality.AIM To identify and build the best predictive model for predicting cyanotic and acyanotic congenital heart disease in children during pregnancy and identify their potential risk factors.METHODS The data were collected from the Pediatric Cardiology Department at Chaudhry Pervaiz Elahi Institute of Cardiology Multan,Pakistan from December 2017 to October 2019.A sample of 3900 mothers whose children were diagnosed with identify the potential outliers.Different machine learning models were compared,and the best-fitted model was selected using the area under the curve,sensitivity,and specificity of the models.RESULTS Out of 3900 patients included,about 69.5%had acyanotic and 30.5%had cyanotic congenital heart disease.Males had more cases of acyanotic(53.6%)and cyanotic(54.5%)congenital heart disease as compared to females.The odds of having cyanotic was 1.28 times higher for children whose mothers used more fast food frequently during pregnancy.The artificial neural network model was selected as the best predictive model with an area under the curve of 0.9012,sensitivity of 65.76%,and specificity of 97.23%.CONCLUSION Children having a positive family history are at very high risk of having cyanotic and acyanotic congenital heart disease.Males are more at risk and their mothers need more care,good food,and physical activity during pregnancy.The best-fitted model for predicting cyanotic and acyanotic congenital heart disease is the artificial neural network.The results obtained and the best model identified will be useful for medical practitioners and public health scientists for an informed decision-making process about the earlier diagnosis and improve the health condition of children in Pakistan. 展开更多
关键词 Congenital heart disease Cyanotic heart disease Acyanotic heart disease Logistic regression model Artificial neural network
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
12
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear regression model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization Algorithm k-Nearest Neighbor and Mean imputation
下载PDF
Modeling Solid Waste Minimization Performance at Source in Dar es Salaam City, Tanzania
13
作者 Abdon Salim Mapunda Richard Joseph Kimwaga Shaaban Ally Kassuwi 《Journal of Geoscience and Environment Protection》 2024年第9期17-32,共16页
Municipal solid waste generation is strongly linked to rising human population and expanding urban areas, with significant implications on urban metabolism as well as space and place values redefinition. Effective man... Municipal solid waste generation is strongly linked to rising human population and expanding urban areas, with significant implications on urban metabolism as well as space and place values redefinition. Effective management performance of municipal solid waste management underscores the interdisciplinarity strategies. Such knowledge and skills are paramount to uncover the sources of waste generation as well as means of waste storage, collection, recycling, transportation, handling/treatment, disposal, and monitoring. This study was conducted in Dar es Salaam city. Driven by the curiosity model of the solid waste minimization performance at source, study data was collected using focus group discussion techniques to ward-level local government officers, which was triangulated with literature and documentary review. The main themes of the FGD were situational factors (SFA) and local government by-laws (LGBY). In the FGD session, sub-themes of SFA tricked to understand how MSW minimization is related to the presence and effect of services such as land use planning, availability of landfills, solid waste transfer stations, material recovery facilities, incinerators, solid waste collection bins, solid waste trucks, solid waste management budget and solid waste collection agents. Similarly, FGD on LGBY was extended by sub-themes such as contents of the by-law, community awareness of the by-law, and by-law enforcement mechanisms. While data preparation applied an analytical hierarchy process, data analysis applied an ordinary least square (OLS) regression model for sub-criteria that explain SFA and LGBY;and OLS standard residues as variables into geographically weighted regression with a resolution of 241 × 241 meter in ArcMap v10.5. Results showed that situational factors and local government by-laws have a strong relationship with the rate of minimizing solid waste dumping in water bodies (local R square = 0.94). 展开更多
关键词 modeling Solid Waste Minimization Dar es Salaam City Ordinary Least Square (OLS) regression model Situation Factors Local Government by Laws
下载PDF
Smoothed Empirical Likelihood Inference for Nonlinear Quantile Regression Models with Missing Response
14
作者 Honghua Dong Xiuli Wang 《Open Journal of Applied Sciences》 2023年第6期921-933,共13页
In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are o... In this paper, three smoothed empirical log-likelihood ratio functions for the parameters of nonlinear models with missing response are suggested. Under some regular conditions, the corresponding Wilks phenomena are obtained and the confidence regions for the parameter can be constructed easily. 展开更多
关键词 Nonlinear model Quantile regression Smoothed Empirical Likelihood Missing at Random
下载PDF
Genetic Regression Model for Dam Safety Monitoring 被引量:2
15
作者 马震岳 陈维江 董毓新 《Transactions of Tianjin University》 EI CAS 2002年第3期196-199,共4页
Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking s... Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking selection operator, an arithmetical crossover operator and a uniform mutation operator, and calculated the least-square error of the observed and computed values as its fitness function. The elitist strategy was used to improve the speed of the convergence. After that, the modified genetic algorithm was applied to reassess the coefficients of the regression model and a genetic regression model was set up. As an example, a slotted gravity dam in the Northeast of China was introduced. The computational results show that the genetic regression model can solve the under-fitting problems perfectly. 展开更多
关键词 dam safety monitoring under-fitting genetic regression model
下载PDF
RBF neural network regression model based on fuzzy observations 被引量:1
16
作者 朱红霞 沈炯 苏志刚 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期400-406,共7页
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu... A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy. 展开更多
关键词 radial basis function neural network (RBFNN) fuzzy membership function imprecise observation regression model
下载PDF
Adaptive Random Effects/Coefficients Modeling
17
作者 George J. Knafl 《Open Journal of Statistics》 2024年第2期179-206,共28页
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general... Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time. 展开更多
关键词 Adaptive regression Correlated Outcomes Extended Linear Mixed modeling Fractional Polynomials Likelihood Cross-Validation Random Effects/Coefficients
下载PDF
Time Series Analysis and Prediction of COVID-19 Pandemic Using Dynamic Harmonic Regression Models
18
作者 Lei Wang 《Open Journal of Statistics》 2023年第2期222-232,共11页
Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urg... Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches. 展开更多
关键词 Dynamic Harmonic regression with ARIMA Errors COVID-19 Pandemic Forecasting models Time Series Analysis Weekly Seasonality
下载PDF
Short Term Load Forecasting Using Subset Threshold Auto Regressive Model
19
作者 孙海健 《Journal of Southeast University(English Edition)》 EI CAS 1999年第2期78-83,共6页
The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is pr... The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model. 展开更多
关键词 power load forecasting subset threshold auto regressive model
下载PDF
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:31
20
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部