The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu...The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.展开更多
The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accura...The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy.展开更多
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
Support Vector-based learning methods are an important part of Computational Intelligence techniques. Recent efforts have been dealing with the problem of learning from very large datasets. This paper reviews the most...Support Vector-based learning methods are an important part of Computational Intelligence techniques. Recent efforts have been dealing with the problem of learning from very large datasets. This paper reviews the most commonly used formulations of support vector machines for regression (SVRs) aiming to emphasize its usability on large-scale applications. We review the general concept of support vector machines (SVMs), address the state-of-the-art on training methods SVMs, and explain the fundamental principle of SVRs. The most common learning methods for SVRs are introduced and linear programming-based SVR formulations are explained emphasizing its suitability for large-scale learning. Finally, this paper also discusses some open problems and current trends.展开更多
In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using ...In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method.展开更多
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin...Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.展开更多
Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introdu...Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.展开更多
The principle of the support vector regression machine(SVR) is first analysed. Then the new data-dependent kernel function is constructed from information geometry perspective. The current waveforms change regularly...The principle of the support vector regression machine(SVR) is first analysed. Then the new data-dependent kernel function is constructed from information geometry perspective. The current waveforms change regularly in accordance with the different horizontal offset when the rotational frequency of the high speed rotational arc sensor is in the range from 15 Hz to 30 Hz. The welding current data is pretreated by wavelet filtering, mean filtering and normalization treatment. The SVR model is constructed by making use of the evolvement laws, the decision function can be achieved by training the SVR and the seam offset can be identified. The experimental results show that the precision of the offset identification can be greatly improved by modifying the SVR and applying mean filteringfrom the longitudinal direction.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for...The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
Prostate cancer(PCa)symptoms are commonly confused with benign prostate hyperplasia(BPH),particularly in the early stages due to similarities between symptoms,and in some instances,underdiagnoses.Clinical methods have...Prostate cancer(PCa)symptoms are commonly confused with benign prostate hyperplasia(BPH),particularly in the early stages due to similarities between symptoms,and in some instances,underdiagnoses.Clinical methods have been utilized to diagnose PCa;however,at the full-blown stage,clinical methods usually present high risks of complicated side effects.Therefore,we proposed the use of support vector machine for early differential diagnosis of PCa(SVM-PCa-EDD).SVM was used to classify persons with and without PCa.We used the PCa dataset from the Kaggle Healthcare repository to develop and validate SVM model for classification.The PCa dataset consisted of 250 features and one class of features.Attributes considered in this study were age,body mass index(BMI),race,family history,obesity,trouble urinating,urine stream force,blood in semen,bone pain,and erectile dysfunction.The SVM-PCa-EDD was used for preprocessing the PCa dataset,specifically dealing with class imbalance,and for dimensionality reduction.After eliminating class imbalance,the area under the receiver operating characteristic(ROC)curve(AUC)of the logistic regression(LR)model trained with the downsampled dataset was 58.4%,whereas that of the AUC-ROC of LR trained with the class imbalance dataset was 54.3%.The SVM-PCa-EDD achieved 90%accuracy,80%sensitivity,and 80%specificity.The validation of SVM-PCa-EDD using random forest and LR showed that SVM-PCa-EDD performed better in early differential diagnosis of PCa.The proposed model can assist medical experts in early diagnosis of PCa,particularly in resource-constrained healthcare settings and making further recommendations for PCa testing and treatment.展开更多
Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM wa...Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM was applied to predict 5-year survival status of patients with nasopharyngeal carcinoma (NPC) after treatment, we expect to find a new way for prognosis studies in cancer so as to assist right clinical decision for individual patient. Methods: Two modelling methods were used in the study; SVM network and a standard parametric logistic regression were used to model 5-year survival status. And the two methods were compared on a prospective set of patients not used in model construction via receiver operating characteristic (ROC) curve analysis. Results: The SVM1, trained with the 25 original input variables without screening, yielded a ROC area of 0.868, at sensitivity to mortality of 79.2% and the specificity of 94.5%. Similarly, the SVM2, trained with 9 input variables which were obtained by optimal input variable selection from the 25 original variables by logistic regression screening, yielded a ROC area of 0.874, at a sensitivity to mortality of 79.2% and the specificity of 95.6%, while the logistic regression yielded a ROC area of 0.751 at a sensitivity to mortality of 66.7% and gave a specificity of 83.5%. Conclusion: SVM found a strong pattern in the database predictive of 5-year survival status. The logistic regression produces somewhat similar, but better, results. These results show that the SVM models have the potential to predict individual patient's 5-year survival status after treatment, and to assist the clinicians for making a good clinical decision.展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.展开更多
The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of o...The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of oil or gas.Hence,accurately calculating the total organic carbon content in a formation is very important.Present research is focused on precisely calculating the total organic carbon content based on machine learning.At present,many machine learning methods,including backpropagation neural networks,support vector regression,random forests,extreme learning machines,and deep learning,are employed to evaluate the total organic carbon content.However,the principles and perspectives of various machine learning algorithms are quite different.This paper reviews the application of various machine learning algorithms to deal with total organic carbon content evaluation problems.Of various machine learning algorithms used for TOC content predication,two algorithms,the backpropagation neural network and support vector regression are the most commonly used,and the backpropagation neural network is sometimes combined with many other algorithms to achieve better results.Additionally,combining multiple algorithms or using deep learning to increase the number of network layers can further improve the total organic carbon content prediction.The prediction by backpropagation neural network may be better than that by support vector regression;nevertheless,using any type of machine learning algorithm improves the total organic carbon content prediction in a given research block.According to some published literature,the determination coefficient(R^(2))can be increased by up to 0.46 after using machine learning.Deep learning algorithms may be the next breakthrough direction that can significantly improve the prediction of the total organic carbon content.Evaluating the total organic carbon content based on machine learning is of great significance.展开更多
The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on ...The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF.展开更多
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio...In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.展开更多
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit...As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.展开更多
Support vector machine(SVM) has shown great potential in pattern recognition and regressive estima-tion.Due to the industrial development demands,such as the fermentation process modeling,improving the training perfor...Support vector machine(SVM) has shown great potential in pattern recognition and regressive estima-tion.Due to the industrial development demands,such as the fermentation process modeling,improving the training performance on increasingly large sample sets is an important problem.However,solving a large optimization problem is computationally intensive and memory intensive.In this paper,a geometric interpretation of SVM re-gression(SVR) is derived,and μ-SVM is extended for both L1-norm and L2-norm penalty SVR.Further,Gilbert al-gorithm,a well-known geometric algorithm,is modified to solve SVR problems.Theoretical analysis indicates that the presented SVR training geometric algorithms have the same convergence and almost identical cost of computa-tion as their corresponding algorithms for SVM classification.Experimental results show that the geometric meth-ods are more efficient than conventional methods using quadratic programming and require much less memory.展开更多
Climate change is the most serious causes and has a direct impact on biodiversity.According to the world’s biodiversity conservation organization,rep-tile species are most affected since their biological and ecologic...Climate change is the most serious causes and has a direct impact on biodiversity.According to the world’s biodiversity conservation organization,rep-tile species are most affected since their biological and ecological qualities are directly linked to climate.Due to a lack of time frame in existing works,conser-vation adoption affects the performance of existing works.The proposed research presents a knowledge-driven Decision Support System(DSS)including the assisted translocation to adapt to future climate change to conserving from its extinction.The Dynamic approach is used to develop a knowledge-driven DSS using machine learning by applying an ecological and biological variable that characterizes the model and mitigation processes for species.However,the frame-work demonstrates the huge difference in the estimated significance of climate change,the model strategy helps to recognize the probable risk of threatened spe-cies translocation to future climate change.The proposed system is evaluated using various performance metrics and this framework can comfortably adapt to the decisions support to reintroduce the species for conservation in the future.展开更多
基金Hebei Province Key Research and Development Project(No.20313701D)Hebei Province Key Research and Development Project(No.19210404D)+13 种基金Mobile computing and universal equipment for the Beijing Key Laboratory Open Project,The National Social Science Fund of China(17AJL014)Beijing University of Posts and Telecommunications Construction of World-Class Disciplines and Characteristic Development Guidance Special Fund “Cultural Inheritance and Innovation”Project(No.505019221)National Natural Science Foundation of China(No.U1536112)National Natural Science Foundation of China(No.81673697)National Natural Science Foundation of China(61872046)The National Social Science Fund Key Project of China(No.17AJL014)“Blue Fire Project”(Huizhou)University of Technology Joint Innovation Project(CXZJHZ201729)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902218004)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902024006)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201901197007)Industry-University Cooperation Collaborative Education Project of the Ministry of Education(No.201901199005)The Ministry of Education Industry-University Cooperation Collaborative Education Project(No.201901197001)Shijiazhuang science and technology plan project(236240267A)Hebei Province key research and development plan project(20312701D)。
文摘The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.
文摘The computational approaches of support vector machine (SVM), support vector regression (SVR) and molecular docking were widely utilized for the computation of active compounds. In this work, to improve the accuracy and reliability of prediction, the strategy of combining the above three computational approaches was applied to predict potential cytochrome P450 1A2 (CYP1A2) inhibitors. The accuracy of the optimal SVM qualitative model was 99.432%, 97.727%, and 91.667% for training set, internal test set and external test set, respectively, showing this model had high discrimination ability. The R2 and mean square error for the optimal SVR quantitative model were 0.763, 0.013 for training set, and 0.753, 0.056 for test set respectively, indicating that this SVR model has high predictive ability for the biolog-ical activities of compounds. According to the results of the SVM and SVR models, some types of descriptors were identi ed to be essential to bioactivity prediction of compounds, including the connectivity indices, constitutional descriptors and functional group counts. Moreover, molecular docking studies were used to reveal the binding poses and binding a n-ity of potential inhibitors interacting with CYP1A2. Wherein, the amino acids of THR124 and ASP320 could form key hydrogen bond interactions with active compounds. And the amino acids of ALA317 and GLY316 could form strong hydrophobic bond interactions with active compounds. The models obtained above were applied to discover potential CYP1A2 inhibitors from natural products, which could predict the CYPs-mediated drug-drug inter-actions and provide useful guidance and reference for rational drug combination therapy. A set of 20 potential CYP1A2 inhibitors were obtained. Part of the results was consistent with references, which further indicates the accuracy of these models and the reliability of this combinatorial computation strategy.
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
文摘Support Vector-based learning methods are an important part of Computational Intelligence techniques. Recent efforts have been dealing with the problem of learning from very large datasets. This paper reviews the most commonly used formulations of support vector machines for regression (SVRs) aiming to emphasize its usability on large-scale applications. We review the general concept of support vector machines (SVMs), address the state-of-the-art on training methods SVMs, and explain the fundamental principle of SVRs. The most common learning methods for SVRs are introduced and linear programming-based SVR formulations are explained emphasizing its suitability for large-scale learning. Finally, this paper also discusses some open problems and current trends.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674172 and 10874229)
文摘In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method.
文摘Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.
文摘Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.
基金Supported by National Natural Science Foundation of China( No. 50705030).
文摘The principle of the support vector regression machine(SVR) is first analysed. Then the new data-dependent kernel function is constructed from information geometry perspective. The current waveforms change regularly in accordance with the different horizontal offset when the rotational frequency of the high speed rotational arc sensor is in the range from 15 Hz to 30 Hz. The welding current data is pretreated by wavelet filtering, mean filtering and normalization treatment. The SVR model is constructed by making use of the evolvement laws, the decision function can be achieved by training the SVR and the seam offset can be identified. The experimental results show that the precision of the offset identification can be greatly improved by modifying the SVR and applying mean filteringfrom the longitudinal direction.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
文摘The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
文摘Prostate cancer(PCa)symptoms are commonly confused with benign prostate hyperplasia(BPH),particularly in the early stages due to similarities between symptoms,and in some instances,underdiagnoses.Clinical methods have been utilized to diagnose PCa;however,at the full-blown stage,clinical methods usually present high risks of complicated side effects.Therefore,we proposed the use of support vector machine for early differential diagnosis of PCa(SVM-PCa-EDD).SVM was used to classify persons with and without PCa.We used the PCa dataset from the Kaggle Healthcare repository to develop and validate SVM model for classification.The PCa dataset consisted of 250 features and one class of features.Attributes considered in this study were age,body mass index(BMI),race,family history,obesity,trouble urinating,urine stream force,blood in semen,bone pain,and erectile dysfunction.The SVM-PCa-EDD was used for preprocessing the PCa dataset,specifically dealing with class imbalance,and for dimensionality reduction.After eliminating class imbalance,the area under the receiver operating characteristic(ROC)curve(AUC)of the logistic regression(LR)model trained with the downsampled dataset was 58.4%,whereas that of the AUC-ROC of LR trained with the class imbalance dataset was 54.3%.The SVM-PCa-EDD achieved 90%accuracy,80%sensitivity,and 80%specificity.The validation of SVM-PCa-EDD using random forest and LR showed that SVM-PCa-EDD performed better in early differential diagnosis of PCa.The proposed model can assist medical experts in early diagnosis of PCa,particularly in resource-constrained healthcare settings and making further recommendations for PCa testing and treatment.
文摘Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM was applied to predict 5-year survival status of patients with nasopharyngeal carcinoma (NPC) after treatment, we expect to find a new way for prognosis studies in cancer so as to assist right clinical decision for individual patient. Methods: Two modelling methods were used in the study; SVM network and a standard parametric logistic regression were used to model 5-year survival status. And the two methods were compared on a prospective set of patients not used in model construction via receiver operating characteristic (ROC) curve analysis. Results: The SVM1, trained with the 25 original input variables without screening, yielded a ROC area of 0.868, at sensitivity to mortality of 79.2% and the specificity of 94.5%. Similarly, the SVM2, trained with 9 input variables which were obtained by optimal input variable selection from the 25 original variables by logistic regression screening, yielded a ROC area of 0.874, at a sensitivity to mortality of 79.2% and the specificity of 95.6%, while the logistic regression yielded a ROC area of 0.751 at a sensitivity to mortality of 66.7% and gave a specificity of 83.5%. Conclusion: SVM found a strong pattern in the database predictive of 5-year survival status. The logistic regression produces somewhat similar, but better, results. These results show that the SVM models have the potential to predict individual patient's 5-year survival status after treatment, and to assist the clinicians for making a good clinical decision.
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.
基金This project was funded by the Open Fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources,the Ministry of Education(No.K2021-03)National Natural Science Foundation of China(No.42106213)+2 种基金the Hainan Provincial Natural Science Foundation of China(No.421QN281)the China Postdoctoral Science Foundation(Nos.2021M690161 and 2021T140691)the Postdoctorate Funded Project in Hainan Province.
文摘The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of oil or gas.Hence,accurately calculating the total organic carbon content in a formation is very important.Present research is focused on precisely calculating the total organic carbon content based on machine learning.At present,many machine learning methods,including backpropagation neural networks,support vector regression,random forests,extreme learning machines,and deep learning,are employed to evaluate the total organic carbon content.However,the principles and perspectives of various machine learning algorithms are quite different.This paper reviews the application of various machine learning algorithms to deal with total organic carbon content evaluation problems.Of various machine learning algorithms used for TOC content predication,two algorithms,the backpropagation neural network and support vector regression are the most commonly used,and the backpropagation neural network is sometimes combined with many other algorithms to achieve better results.Additionally,combining multiple algorithms or using deep learning to increase the number of network layers can further improve the total organic carbon content prediction.The prediction by backpropagation neural network may be better than that by support vector regression;nevertheless,using any type of machine learning algorithm improves the total organic carbon content prediction in a given research block.According to some published literature,the determination coefficient(R^(2))can be increased by up to 0.46 after using machine learning.Deep learning algorithms may be the next breakthrough direction that can significantly improve the prediction of the total organic carbon content.Evaluating the total organic carbon content based on machine learning is of great significance.
基金Item Sponsored by National Natural Science Foundation of China (60374003)
文摘The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF.
基金supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)Project of Environmental Business Big Data Platform and Center Construction funded by the Ministry of Science and ICT。
文摘In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.
基金supported by the National Natural Science Foundation of China (61074127)
文摘As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.
基金Supported by the National Natural Science Foundation of China (20476007,20676013)
文摘Support vector machine(SVM) has shown great potential in pattern recognition and regressive estima-tion.Due to the industrial development demands,such as the fermentation process modeling,improving the training performance on increasingly large sample sets is an important problem.However,solving a large optimization problem is computationally intensive and memory intensive.In this paper,a geometric interpretation of SVM re-gression(SVR) is derived,and μ-SVM is extended for both L1-norm and L2-norm penalty SVR.Further,Gilbert al-gorithm,a well-known geometric algorithm,is modified to solve SVR problems.Theoretical analysis indicates that the presented SVR training geometric algorithms have the same convergence and almost identical cost of computa-tion as their corresponding algorithms for SVM classification.Experimental results show that the geometric meth-ods are more efficient than conventional methods using quadratic programming and require much less memory.
文摘Climate change is the most serious causes and has a direct impact on biodiversity.According to the world’s biodiversity conservation organization,rep-tile species are most affected since their biological and ecological qualities are directly linked to climate.Due to a lack of time frame in existing works,conser-vation adoption affects the performance of existing works.The proposed research presents a knowledge-driven Decision Support System(DSS)including the assisted translocation to adapt to future climate change to conserving from its extinction.The Dynamic approach is used to develop a knowledge-driven DSS using machine learning by applying an ecological and biological variable that characterizes the model and mitigation processes for species.However,the frame-work demonstrates the huge difference in the estimated significance of climate change,the model strategy helps to recognize the probable risk of threatened spe-cies translocation to future climate change.The proposed system is evaluated using various performance metrics and this framework can comfortably adapt to the decisions support to reintroduce the species for conservation in the future.