Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and c...Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Sys...The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.展开更多
The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la...The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time ...The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time alarm of Doppler radar equipment components,so as to improve the reliability of equipment operation,and truly realize"unattended"remote monitoring.展开更多
Land use/land cover (LULC) mapping and change detection are fundamental aspects of remote sensing data application. Therefore, selecting an appropriate classifier approach is crucial for accurate classification and ch...Land use/land cover (LULC) mapping and change detection are fundamental aspects of remote sensing data application. Therefore, selecting an appropriate classifier approach is crucial for accurate classification and change assessment. In the first part of this study, the performance of machine learning classification algorithms was compared using Landsat 9 image (2023) of the Manouba government (Tunisia). Three different classification methods were applied: Maximum Likelihood Classification (MLC), Support Vector Machine (SVM), and Random Trees (RT). The classification aimed to identify five land use classes: urban area, vegetation, bare area, water and forest. A qualitative assessment was conducted using Overall Accuracy (OA) and the Kappa coefficient (K), derived from a confusion matrix. The results of the land cover classification demonstrated a high level of accuracy. The SVM method exhibited the best performance, with an overall accuracy of 93% and a kappa accuracy of 0.9. The ML method is the second-best classifier with an overall accuracy of 92% and a kappa accuracy of 0.88. The Random Trees method yielded the lowest accuracy among the three approaches, with an overall accuracy of 91% and a kappa accuracy of 0.87. The second part of the study focused on analyzing LULC changes in the study area. Based on the classification results, the SVM method was chosen to classify the Landsat 7 image acquired in 2000. LULC changes from 2000 to 2023 were investigated using change detection comparison. The findings indicate that over the last 23 years, vegetation land and urban areas in the study area have experienced significant increases of 31.94% and 5.47%, respectively. This study contributed to a better understanding of the classification process and dynamic LULC changes in the Manouba region. It provided valuable insights for decision-makers in planning land conservation and management.展开更多
Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictab...Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks.展开更多
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens...The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.展开更多
Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,th...Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,the sources of error associated with using remote sensing to determine the planting year of fruit trees remain unclear.This study investigates several cultivated sweet orange(Citrus sinensis)varieties,which are extensively cultivated throughout subtropical China.We analyzed Landsat time series data from 132 navel orange orchards in Gannan,covering the period from 1993 to 2021.For each orchard,Google Earth Engine was employed to extract three vegetation indices—Enhanced Vegetation Index(EVI),Normalized Difference Vegetation Index(NDVI),and Normalized Burn Ratio(NBR)—for each available date,thereby generating three distinct vegetation index time series.The planting year of navel orange trees was identified based on abrupt changes observed in these time series.The principal sources of error in determining the planting year were investigated using the Wilcoxon signed-rank test,Spearman's correlation analysis,and Kruskal-Wallis H test.Key findings include:(1)Following the planting of navel orange trees,EVI,NDVI,and NBR exhibited fluctuations and a gradual increase over time,peaking approximately 10 to 15 years later.(2)The vegetation index time series derived from Landsat imagery effectively determined the planting year of evergreen navel orange trees in orchards,even within highly fragmented landscapes.Among these indices,NDVI and NBR time series outperformed the EVI time series.Specifically,the average determination errors for EVI,NDVI,and NBR time series were 6.4,1.8,and 2.8 years,respectively.(3)Major sources of error included the methods used to construct the time series,the selection of vegetation indices,and the orchard management practices.Overall,this study provides a viable method for determining the planting year of evergreen navel orange trees in fragmented landscapes and offers insights into factors contributing to uncertainty in planting year determination.展开更多
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ...The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.展开更多
In this study,the characteristics and preliminary causes of tropical cyclone remote precipitation(TRP)over China during the period from 1979 to 2020 are investigated.Results indicated that approximately 72.42%of tropi...In this study,the characteristics and preliminary causes of tropical cyclone remote precipitation(TRP)over China during the period from 1979 to 2020 are investigated.Results indicated that approximately 72.42%of tropical cyclones(TCs)in the Western Pacific produce TRP over China.The peak months for TRP are July and August.The four key regions of TRP are the adjacent areas between the Sichuan and Shaanxi Provinces,the northern coast of the Bohai Sea,the coast of the Yellow Sea,and the southern coast area.The typical distance between the station with TRP and the TC center ranges from 1500 to 2500 km.Most of these stations are situated north to 60°west of north of the TC.The south–west water vapor transportation on the west side of the TC is crucial to TRP.TRP has a decreasing trend because of the decrease in the number of TCs that generate TRP.From the perspective of large-scale environmental conditions,a decrease in the integrated horizontal water vapor transport in China' Mainland,the weakening of upward motion at approximately 25°–35°N,which is inconducive to convection,and an increase in low-level vertical wind shear,which is unfavorable for the development of TC in areas with high frequencies of TRP-related TCs,are the factors that result in the decreasing trend of TRP.展开更多
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po...The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.展开更多
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and d...Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.展开更多
Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the m...Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.展开更多
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,...Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state esti...Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state estimation(RSE)is an indispensable functional module of CPSs.Recently,it has been demonstrated that malicious agents can manipulate data packets transmitted through unreliable channels of RSE,leading to severe estimation performance degradation.This paper aims to present an overview of recent advances in cyber-attacks and defensive countermeasures,with a specific focus on integrity attacks against RSE.Firstly,two representative frameworks for the synthesis of optimal deception attacks with various performance metrics and stealthiness constraints are discussed,which provide a deeper insight into the vulnerabilities of RSE.Secondly,a detailed review of typical attack detection and resilient estimation algorithms is included,illustrating the latest defensive measures safeguarding RSE from adversaries.Thirdly,some prevalent attacks impairing the confidentiality and data availability of RSE are examined from both attackers'and defenders'perspectives.Finally,several challenges and open problems are presented to inspire further exploration and future research in this field.展开更多
In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the ap...In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.展开更多
High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the d...High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks.展开更多
基金This study was supported by the National Natural Science Foundation of China(42271396)the Natural Science Foundation of Shandong Province(ZR2022MD017)+1 种基金the Key R&D Project of Hebei Province(22326406D)The European Space Agency(ESA)and Ministry of Science and Technology of China(MOST)Dragon(57457).
文摘Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
文摘The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.
文摘The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
文摘The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time alarm of Doppler radar equipment components,so as to improve the reliability of equipment operation,and truly realize"unattended"remote monitoring.
文摘Land use/land cover (LULC) mapping and change detection are fundamental aspects of remote sensing data application. Therefore, selecting an appropriate classifier approach is crucial for accurate classification and change assessment. In the first part of this study, the performance of machine learning classification algorithms was compared using Landsat 9 image (2023) of the Manouba government (Tunisia). Three different classification methods were applied: Maximum Likelihood Classification (MLC), Support Vector Machine (SVM), and Random Trees (RT). The classification aimed to identify five land use classes: urban area, vegetation, bare area, water and forest. A qualitative assessment was conducted using Overall Accuracy (OA) and the Kappa coefficient (K), derived from a confusion matrix. The results of the land cover classification demonstrated a high level of accuracy. The SVM method exhibited the best performance, with an overall accuracy of 93% and a kappa accuracy of 0.9. The ML method is the second-best classifier with an overall accuracy of 92% and a kappa accuracy of 0.88. The Random Trees method yielded the lowest accuracy among the three approaches, with an overall accuracy of 91% and a kappa accuracy of 0.87. The second part of the study focused on analyzing LULC changes in the study area. Based on the classification results, the SVM method was chosen to classify the Landsat 7 image acquired in 2000. LULC changes from 2000 to 2023 were investigated using change detection comparison. The findings indicate that over the last 23 years, vegetation land and urban areas in the study area have experienced significant increases of 31.94% and 5.47%, respectively. This study contributed to a better understanding of the classification process and dynamic LULC changes in the Manouba region. It provided valuable insights for decision-makers in planning land conservation and management.
基金funded by the Gansu Provincial Science and Technology Program(22ZD6FA005)Gansu Postdoctoral Science Foundation(Grant number-E339880204)。
文摘Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks.
基金The financial support from the National Natural Science Foundation of China (32201179)Guangdong Basic and Applied Basic Research Foundation (2020A1515110126 and 2021A1515010130)+1 种基金the Fundamental Research Funds for the Central Universities (N2319005)Ningbo Science and Technology Major Project (2021Z027) is gratefully acknowledged。
文摘The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.
基金sponsored by the Science and Technology Project of the Education Department of Jiangxi Province [Grant No. GJJ211427]Open project of discipline construction of the School of Geography and Environmental Engineering of Gannan Normal UniversityNational Natural Science Foundation of China [Grant No. 42161019]
文摘Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,the sources of error associated with using remote sensing to determine the planting year of fruit trees remain unclear.This study investigates several cultivated sweet orange(Citrus sinensis)varieties,which are extensively cultivated throughout subtropical China.We analyzed Landsat time series data from 132 navel orange orchards in Gannan,covering the period from 1993 to 2021.For each orchard,Google Earth Engine was employed to extract three vegetation indices—Enhanced Vegetation Index(EVI),Normalized Difference Vegetation Index(NDVI),and Normalized Burn Ratio(NBR)—for each available date,thereby generating three distinct vegetation index time series.The planting year of navel orange trees was identified based on abrupt changes observed in these time series.The principal sources of error in determining the planting year were investigated using the Wilcoxon signed-rank test,Spearman's correlation analysis,and Kruskal-Wallis H test.Key findings include:(1)Following the planting of navel orange trees,EVI,NDVI,and NBR exhibited fluctuations and a gradual increase over time,peaking approximately 10 to 15 years later.(2)The vegetation index time series derived from Landsat imagery effectively determined the planting year of evergreen navel orange trees in orchards,even within highly fragmented landscapes.Among these indices,NDVI and NBR time series outperformed the EVI time series.Specifically,the average determination errors for EVI,NDVI,and NBR time series were 6.4,1.8,and 2.8 years,respectively.(3)Major sources of error included the methods used to construct the time series,the selection of vegetation indices,and the orchard management practices.Overall,this study provides a viable method for determining the planting year of evergreen navel orange trees in fragmented landscapes and offers insights into factors contributing to uncertainty in planting year determination.
基金This research was supported by the Ningxia Hui Autonomous Region Key Research and Development Plan(2022BEG03052).
文摘The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_1136)the National Natural Scientific Foundation of China (No.42275037)+2 种基金the Basic Research Fund of CAMS (No.2023Z016)the Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province (No.SCSF202202)supported by the Jiangsu Collaborative Innovation Center for Climate Change。
文摘In this study,the characteristics and preliminary causes of tropical cyclone remote precipitation(TRP)over China during the period from 1979 to 2020 are investigated.Results indicated that approximately 72.42%of tropical cyclones(TCs)in the Western Pacific produce TRP over China.The peak months for TRP are July and August.The four key regions of TRP are the adjacent areas between the Sichuan and Shaanxi Provinces,the northern coast of the Bohai Sea,the coast of the Yellow Sea,and the southern coast area.The typical distance between the station with TRP and the TC center ranges from 1500 to 2500 km.Most of these stations are situated north to 60°west of north of the TC.The south–west water vapor transportation on the west side of the TC is crucial to TRP.TRP has a decreasing trend because of the decrease in the number of TCs that generate TRP.From the perspective of large-scale environmental conditions,a decrease in the integrated horizontal water vapor transport in China' Mainland,the weakening of upward motion at approximately 25°–35°N,which is inconducive to convection,and an increase in low-level vertical wind shear,which is unfavorable for the development of TC in areas with high frequencies of TRP-related TCs,are the factors that result in the decreasing trend of TRP.
基金the funding from the National Natural Science Foundation of China(22178301 and 21938011)the grant from the Science&Technology Department of Zhejiang Province(2023C01182)+3 种基金the funding from the Natural Science Foundation of Zhejiang Province(LR21B060003)supported by the Fundamental Research Funds for the Central Universities(226-2024-00023)Shanxi Institute of Zhejiang University for New Materials and Chemical Industry(2022SZ-TD005)Quzhou Science and Technology Program(2021NC02).
文摘The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.
基金supported by the National Natural Science Foundation under Project No. 52205590the Natural Science Foundation of Jiangsu Province under Project No. BK20220834+4 种基金the Start-up Research Fund of Southeast University under Project No. RF1028623098the Xiaomi Foundation/ Xiaomi Young Talents Programsupported by the Research Impact Fund (project no. R4015-21)Research Fellow Scheme (project no. RFS2122-4S03)the EU-Hong Kong Research and Innovation Cooperation Co-funding Mechanism (project no. E-CUHK401/20) from the Research Grants Council (RGC) of Hong Kong, the SIAT-CUHK Joint Laboratory of Robotics and Intelligent Systems, and the Multi-Scale Medical Robotics Center (MRC), InnoHK, at the Hong Kong Science Park
文摘Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.
文摘Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.
基金Supported by the Fundamental Research Projects of Science&Technology Innovation and Development Plan in Yantai City(No.2022JCYJ041)the Natural Science Foundation of Shandong Province(Nos.ZR2022MD042,ZR2022MD028)+1 种基金the Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences(No.YICE351030601)the NSFC Fund Project(No.42206240)。
文摘Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金the Natural Sciences and Engineering Research Council(NSERC)of Canada。
文摘Cyber-physical systems(CPSs)have emerged as an essential area of research in the last decade,providing a new paradigm for the integration of computational and physical units in modern control systems.Remote state estimation(RSE)is an indispensable functional module of CPSs.Recently,it has been demonstrated that malicious agents can manipulate data packets transmitted through unreliable channels of RSE,leading to severe estimation performance degradation.This paper aims to present an overview of recent advances in cyber-attacks and defensive countermeasures,with a specific focus on integrity attacks against RSE.Firstly,two representative frameworks for the synthesis of optimal deception attacks with various performance metrics and stealthiness constraints are discussed,which provide a deeper insight into the vulnerabilities of RSE.Secondly,a detailed review of typical attack detection and resilient estimation algorithms is included,illustrating the latest defensive measures safeguarding RSE from adversaries.Thirdly,some prevalent attacks impairing the confidentiality and data availability of RSE are examined from both attackers'and defenders'perspectives.Finally,several challenges and open problems are presented to inspire further exploration and future research in this field.
文摘In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.
基金the National Natural Science Foundation of China(Grant Number 62066013)Hainan Provincial Natural Science Foundation of China(Grant Numbers 622RC674 and 2019RC182).
文摘High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks.