This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong...This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.展开更多
In order to analyze the spatial maneuverability of the remotely operated underwater vehicle(ROV),the 6-DOF motion mathematic model of the ROV was founded.Hydrodynamics were analyzed by using the Taylor series.The thru...In order to analyze the spatial maneuverability of the remotely operated underwater vehicle(ROV),the 6-DOF motion mathematic model of the ROV was founded.Hydrodynamics were analyzed by using the Taylor series.The thrusters on the ROV were discussed.This paper considers three cases of motion simulation:vertical motion,rotational motion and Z-shape motion.A series of simulation experiments showed that the 6-DOF motion mathematic model was correct and reliable,and also fit with the scene simulation.展开更多
Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by usin...Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by using existing equipment/platform with the addition of external attachment to make it a functional product.Iterative prototyping process with extensive testing to achieve user-centric solution.Individual prototypes and their possible sub-configurations with their integration and characteristics are studied and compared with numerical model,inferences obtained are utilised to improve for the next iteration.A novel hinge-clamp assembly enables this marine surface vehicle to operate in the event of an overturn,this phenomenon is further studied with the aid of a mathematical model(Pendulum in a fluid).This research project aims to demonstrate a multi-role unmanned surface vehicle.展开更多
This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Sh...This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed.Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients.Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated.And the results show that the data can satisfy with the design requirements of the ROV developed.展开更多
Underwater imaging is being used increasingly by marine biologists as a means to assess the abundance of marine resources and their biodiversity. Previously, we developed the first automatic approach for estimating th...Underwater imaging is being used increasingly by marine biologists as a means to assess the abundance of marine resources and their biodiversity. Previously, we developed the first automatic approach for estimating the abundance of Norway lobsters and counting their burrows in video sequences captured using a monochrome camera mounted on trawling gear. In this paper, an alternative framework is proposed and tested using deep-water video sequences acquired via a remotely operated vehicle. The proposed framework consists of four modules:(1) preprocessing,(2) object detection and classification,(3) object-tracking, and(4) quantification. Encouraging results were obtained from available test videos for the automatic video-based abundance estimation in comparison with manual counts by human experts(ground truth). For the available test set, the proposed system achieved 100%precision and recall for lobster counting, and around 83% precision and recall for burrow detection.展开更多
Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(...Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.展开更多
The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from Universi...The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.展开更多
基金financially supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2008AA092301)
文摘This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.
基金Supported by Major Projects of Science Research of Ministry of Education(311034)
文摘In order to analyze the spatial maneuverability of the remotely operated underwater vehicle(ROV),the 6-DOF motion mathematic model of the ROV was founded.Hydrodynamics were analyzed by using the Taylor series.The thrusters on the ROV were discussed.This paper considers three cases of motion simulation:vertical motion,rotational motion and Z-shape motion.A series of simulation experiments showed that the 6-DOF motion mathematic model was correct and reliable,and also fit with the scene simulation.
文摘Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by using existing equipment/platform with the addition of external attachment to make it a functional product.Iterative prototyping process with extensive testing to achieve user-centric solution.Individual prototypes and their possible sub-configurations with their integration and characteristics are studied and compared with numerical model,inferences obtained are utilised to improve for the next iteration.A novel hinge-clamp assembly enables this marine surface vehicle to operate in the event of an overturn,this phenomenon is further studied with the aid of a mathematical model(Pendulum in a fluid).This research project aims to demonstrate a multi-role unmanned surface vehicle.
基金Project supported by the National High Technology Research and Development Progm of China (863 Program,Grant No.2008AA092301)
文摘This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed.Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients.Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated.And the results show that the data can satisfy with the design requirements of the ROV developed.
基金Project supported by the UTAR Research Fund from the Universiti Tunku Abdul Rahman,Malaysia(No.IPSR/RMC/UTARRF/2013-C2/L03)
文摘Underwater imaging is being used increasingly by marine biologists as a means to assess the abundance of marine resources and their biodiversity. Previously, we developed the first automatic approach for estimating the abundance of Norway lobsters and counting their burrows in video sequences captured using a monochrome camera mounted on trawling gear. In this paper, an alternative framework is proposed and tested using deep-water video sequences acquired via a remotely operated vehicle. The proposed framework consists of four modules:(1) preprocessing,(2) object detection and classification,(3) object-tracking, and(4) quantification. Encouraging results were obtained from available test videos for the automatic video-based abundance estimation in comparison with manual counts by human experts(ground truth). For the available test set, the proposed system achieved 100%precision and recall for lobster counting, and around 83% precision and recall for burrow detection.
基金Project(20100480964) supported by China Postdoctoral Science FoundationProjects(2002AA420090,2008AA092301) supported by the National High Technology Research and Development Program of China
文摘Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.
基金support to the University of South Florida(Grants No.0014-96-1-5013 and No.0014-97-1-0006)cooperation between Ocean University of China and University of South Florida.
文摘The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.