Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also i...Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.展开更多
This paper aims to establish an index system for evaluation of agricultural resources use efficiency(ARUE) in grain production and discuss the causes of low efficiency and high consumption of agricultural resources in...This paper aims to establish an index system for evaluation of agricultural resources use efficiency(ARUE) in grain production and discuss the causes of low efficiency and high consumption of agricultural resources in Changshu of Jiangsu Province,Taihe of Jiangxi Province and Ansai of Shaanxi Province in China by analyzing the data about meteorology,soil,water consumption and grain production. Agro-ecological Zone(AEZ) method was adopted to calculate the potential productivity,and synthetically multivariate equation was used to evaluate the ARUE of study areas. This paper can be concluded as:1) the agricultural resources in grain production can be classified into five categories,i.e.,climatic resources,water resources,land resources,biological resources and assistant resources,and 15 indexes were selected to evaluate their use efficiency in grain production;2) the values of ARUE in grain production are 0.5868,0.6368 and 0.5390 respectively in Changshu,Taihe and Ansai;and 3) Changshu ranks the highest among the three study areas in terms of the use efficiency of climatic resources and biological resources(evaluation values are 0.0277 and 0.1530) ,but Taihe tops the three in terms of the use efficiency of water resources,land resources and assistant resources(evaluation values are 0.0502,0.2945 and 0.1379 respectively) . However,the ARUE remains always low in Ansai for all the resources. The inefficiencies are caused by poor grain revenue in Changshu,deficient agriculture investments in Taihe and unfavorable natural conditions in Ansai.展开更多
Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation techniqu...Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation technique by the Ministry of Agriculture of China. It replaces the traditional plowshare with spiral drill, and its tilth depth is twice deeper than that by tractor tilthing. It also extends soil nutrient, moisture, oxygen and microorganism, the so-called "Four pools". Soil nutrient, oxygen, microorganism, light and rainfall use ratio is increased by 10%-100%, creating a platform for natural increase of more than 10% of crop yield. Its application to over 20 kinds of crops in 21 provinces has proved that the yield increases 10-30% with quality enhancing 5% and double water retaining capacity but no more input. When the application area of Fenlong could reach 67 million hm2, the amount of fertilizer can be reduced by 40-50 billion kg, saving 120-150 billion Yuan. In this paper, we put forward the strategy of "4+1" (arable, saline-alkali soil, grasslands, Sponge City + rivers) green development in China, and deepened the Fenlong cultivated tilled layer from 16.5 cm to 35 cm for 67 million hm2 arable land, ridged 13.3 million hm2 of saline-alkali soil for 35 cm, and also 35 cm for 67 million hm2 degraded steppe, which could have the following 3 effects: first, the 147 million hm2 of land with Fenlong cultivation could increase loosing soil to 315.491 billion m3, in* creasing by 159.26% for 120 million hm2 of arable land with the average tilled layer of 16.5 cm, which has loosing soil of only 198.1 billion m3, that is, the space of the land increases 1.6 times. Second, every hectare of plowland could store up to 450 m3/hm2 of natural rainfall, and the unused 60 m3 of saline-alkali soil and grasslands could store water of 102 billion m3, showing an increase of over 88.89% for the current plowland storage of 54 billion m3 at now, that is, double the natural rainfall storage capacity. Third, the two multiple increase of natural resources application can bring trillions of resource activation, environmental cleaning, food security, citizens, health, economic, ecological and social benefits, and makes the Chinese nation move forward in green development. Its application in "big scientific research" and "One Belt And One Road" will contribute Chinese strength to the world.展开更多
Traditional tourism is a source of not only income and recreation but also environmental pollution and landscape resource destruction. How to leave the same or even better landscape resources to future generations is ...Traditional tourism is a source of not only income and recreation but also environmental pollution and landscape resource destruction. How to leave the same or even better landscape resources to future generations is the key to sustainable development of tourism industry. Ecotourism industry could be an approach to sustainable use of landscape resources.The connotation of eco-tourism industry and its differences from the traditional tourism in resource use were given in this paper. The ecological planning for Kangyuan recreation area is taken as an example to demonstrate how to make an eco-tourism industry development plan from a system’s point of view.In terms of the characteristics of the landscape resources, advantageous geographic location and principles for eco-tourism industry development,a suitable structure of the eco-tourism industry was presented. Based on ecological suitability analysis of the landscape resource use-analysis of capacity and constraint of landscape resources, spatial distribution of the industry sectors was given.In the development process, both opportunities and risks exist, cost-benefit analysis is thus made, and cost-effective strategies and policies are provided for the eco-tourism industry development.展开更多
From angles of administrative law and private law, the article analyzes relations between environmental right for citizens and the right to use environmental resources owned by company and enterprise and points out th...From angles of administrative law and private law, the article analyzes relations between environmental right for citizens and the right to use environmental resources owned by company and enterprise and points out three principles to balancing two relations: A principle of equal protection, a principle that general interest is superior to special interest as well as taking an account for special interest, in specific circumstances, for example, in the circumstance that clashes between environmental and economic interests can not be avoided, policy makers can put an emphasis on more important social interest according after considering weight of each interest. Finally, the article reaches a conclusion that China should establish system of environmental right for citizens from legislative and administrative levels so that a harmonious society can be constructed with guarantee.展开更多
Improving both grain yield and resource use efficiencies simultaneously is a major challenge in rice production.However,few studies have focused on integrating dense planting with delayed and reduced nitrogen applicat...Improving both grain yield and resource use efficiencies simultaneously is a major challenge in rice production.However,few studies have focused on integrating dense planting with delayed and reduced nitrogen application to enhance grain yield,nitrogen use efficiency (NUE) and radiation use efficiency (RUE) in rice (Oryza sativa L.) in the double rice cropping system in South China.A high-yielding indica hybrid rice cultivar (Yliangyou 143) was grown in field experiments in Guangxi,South China,with three cultivation managements:farmers’practice (FP),dense planting with equal N input and delayed N application (DPEN) and dense planting with reduced N input and delayed N application (DPRN).The grain yields of DPRN reached 10.6 and 9.78 t ha^(–1) in the early and late cropping seasons,respectively,which were significantly higher than the corresponding yields of FP by 23.9–29.9%.The grain yields in DPEN and DPRN were comparable.NUE in DPRN reached 65.2–72.9 kg kg^(–1),which was 61.2–74.1% higher than that in FP and 24.6–30.2% higher than that in DPEN.RUE in DPRN achieved 1.60–1.80 g MJ^(–1),which was 28.6–37.9% higher than that in FP.The productive tiller percentage in DPRN was 7.9–36.2% higher than that in DPEN.Increases in crop growth rate,leaf area duration,N uptake from panicle initiation to heading and enhancement of the apparent transformation ratio of dry weight from stems and leaf sheaths to panicles all contributed to higher grain yield and higher resource use efficiencies in DPRN.Correlation analysis revealed that the agronomic and physiological traits mentioned above were significantly and positively correlated with grain yield.Comparison trials carried out in Guangdong in 2018 and 2019 also showed that DPRN performed better than DPEN.We conclude that DPRN is a feasible approach for simultaneously increasing grain yield,NUE and RUE in the double rice cropping system in South China.展开更多
Tillage represents an important practice that is used to dynamically regulate soil properties,and affects the grain production process and resource use efficiency of crops.The objectives of this 3-year field study car...Tillage represents an important practice that is used to dynamically regulate soil properties,and affects the grain production process and resource use efficiency of crops.The objectives of this 3-year field study carried out in the Huang-Huai-Hai(HHH) Plain of China were to compare the effects of a new deep vertical rotary tillage (DVRT) with the conventional shallow rotary tillage (CT) on soil properties,winter wheat (Triticum aestivum L.) grain yield and water and nitrogen use efficiency at different productivity levels,and to identify a comprehensive management that optimizes both grain yield and resource use efficiency in the HHH Plain.A split-plot design was adopted in field experiments in the winter wheat growing seasons of 2016–2017 (S1),2017–2018 (S2) and 2018–2019 (S3),with DVRT (conducted once in June 2016) and CT performed in the main plots.Subplots were treated with one of four targeted productivity level treatments (SH,the super high productivity level;HH,the high productivity and high efficiency productivity level;FP,the farmer productivity level;ISP,the inherent soil productivity level).The results showed that the soil bulk density was reduced and the soil water content at the anthesis stage was increased in all three years,which were due to the significant effects of DVRT.Compared with CT,grain yields,partial factor productivity of nitrogen (PFP_(N)),and water use efficiency (WUE) under DVRT were increased by 22.0,14.5 and 19.0%.Path analysis and direct correlation decomposition uncovered that grain yield variation of winter wheat was mostly contributed by the spike numbers per area under different tillage modes.General line model analysis revealed that tillage mode played a significant role on grain yield,PFP_(N) and WUE not only as a single factor,but also along with other factors(year and productivity level) in interaction manners.In addition,PFP_(N) and WUE were the highest in HH under DVRT in all three growth seasons.These results provided a theoretical basis and technical support for coordinating the high yield with high resource use efficiency of winter wheat in the resource-restricted region in the HHH Plain of China.展开更多
The rapidly growing demand for food, feed and fuel requires further improvements of land and water management, crop productivity and resource-use efficiencies.Combined field experimentation and crop growth modelling d...The rapidly growing demand for food, feed and fuel requires further improvements of land and water management, crop productivity and resource-use efficiencies.Combined field experimentation and crop growth modelling during the past five decades made a great leap forward in the understanding of factors that determine actual and potential yields of monocrops.The research field of production ecology developed concepts to integrate biological and biophysical processes with the aim to explore crop growth potential in contrasting environments.To understand the potential of more complex systems(multi-cropping and intercropping) we need an agro-ecosystem approach that integrates knowledge derived from various disciplines: agronomy, crop physiology, crop ecology, and environmental sciences(soil, water and climate).Adaptation of cropping systems to climate change and a better tolerance to biotic and abiotic stresses by genetic improvement and by managing diverse cropping systems in a sustainable way will be of key importance in food security.To accelerate sustainable intensification of agricultural production, it is required to develop intercropping systems that are highly productive and stable under conditions with abiotic constraints(water, nutrients and weather).Strategies to achieve sustainable intensification include developing tools to evaluate crop growth potential under more extreme climatic conditions and introducing new crops and cropping systems that are more productive and robust under conditions with abiotic stress.This paper presents some examples of sustainable intensification management of intercropping systems that proved to be tolerant to extreme climate conditions.展开更多
The traditional resource use structure in Himalaya has transformed considerably during the recent past, mainly owing to the growth of population and the resultant increased demand of natural resources in the region. T...The traditional resource use structure in Himalaya has transformed considerably during the recent past, mainly owing to the growth of population and the resultant increased demand of natural resources in the region. This transformation in resource use practices is particularly significant in the densely populated tracts of Himalaya. As a result, cultivated land, forests, pastures and rangelands have been deteriorated and depleted steadily and significantly leading to their conversion into degraded and non-productive lands. These rapid land use changes have not only disrupted the fragile ecological equilibrium in the mountains through indiscriminate deforestation, degradation of land resources and disruption of the hydrological cycle, but also have significant and irreversible adverse impacts on the rural economy, society, livelihood and life quality of mountain communities. It has been observed that the agricultural production has declined, water sources are drying up fast due to decreased ground water recharge and a large number of villages are facing enormous deficit of critical resources, such as food, fodder, firewood and water, mainly due to unabated deforestation. As a result, the rural people, particularly the women, have to travel considerably long distances to collect fodder and firewood and to fetching water. It is therefore highly imperative to evolve a comprehensive and integrated land use framework for the conservation of the biophysical environment and sustainable development of natural resources in Himalaya. The land use policy would help local communities in making use of their natural resources scientifically and judiciously, and thus help in the conservation of the biophysical environment and in the increasing of the productivity of natural resources. The study indicates that conservation of forests and other critical natural resources through community participation, generation of alternative means of livelihood, and employment in rural areas can help increase rural income as well as restore ecosystem services.展开更多
Sustainable use of natural resources is different from sustainable development. As the most important natural resource, sustainable use of land resource is the essential guarantee of sustainable development. The natur...Sustainable use of natural resources is different from sustainable development. As the most important natural resource, sustainable use of land resource is the essential guarantee of sustainable development. The nature of sustainable use of land resource is to retain the quantity and productivity of land resource from generation to generation.The evaluation of sustainable use of land resource is an important method to ensure land use to get onto the sustainable track. Furthermore, building index system is the key of the evaluation. In view of tendency of the evaluation indexes chosen so widely, the evaluation indexes should include only three kinds in the researches on the evaluation of sustainable use of land resource. The first is the stock and structure index of land resource, viz. Areas quantity structure of land resources. In China, it is especially paid attention to the per person index of land quantity and rate between cultivated land and farmland. The second is the productive index of land, which includes the productivity, potentiality, stability and renewal situation of land. The third is the sustained index of land environment. On the evaluation research of area level, we should lay particular emphasis on statistic indexes. With a case of Guangxi Zhuang Autonomous Region in China, the evaluation index system of sustainable land use in county area has been built in this thesis. Using the weighted average method to calculate the means of sustainable land use in each county, according to the land using situation, all counties in the autonomous region have been divided into three types. (1) Sustainable Pattern contains 18 counties, which have higher land resource productivity, stronger sustained abilities of land environment .The economic benefits of land using in these counties are obviously higher. These counties have gotten highly intensive farming, and they are all in the good circumstance. (2) Basically Sustained Pattern contains 48 counties, which productivity of land resource is of middle level. In part of counties and cities, the stock of land resource inclines to lower level, but their land using potentialities are still greater. Through changing land using pattern, these counties can rapidly enter in a good circumstance. (3) Critically Sustained Pattern contains 14 counties, which are mostly in the karst mountain areas. They have less stock of land resource, lower productivity and more extensive cultivation. The productivity of land renewing has been hindered, so it urgently need to be renovated. At last, the writers have explored the basic ways of sustainable use of land resource in Guangxi, China — (1) Retain the stock of land resource and strictly manage farmland uses. (2) Strengthen the value accounting of land resource, and control the farmland occupation of non agricultural construction. (3) Depend on technology advanced, optimize the land using structure, and promote the productive level. (4) Carry out land management all round, and improve the ecological environment of land resource. (5) Enhance evaluation researche and land monitoring, and promote the sustainable utilization level of land resource.展开更多
Fuelwood is the main source of the energy in mountainous regions.Hence,annual wood consumption is very high.Information on fuelwood resources,and their extraction and availability is very scanty.Therefore,present stud...Fuelwood is the main source of the energy in mountainous regions.Hence,annual wood consumption is very high.Information on fuelwood resources,and their extraction and availability is very scanty.Therefore,present study was carried out to study the diversity of fuelwood species,annual collection,preference and availability of fuel species in the forests.Thirty four species(25 trees and 9 shrubs) were extracted for fuel by the inhabitants.Total collection and species preference was highest for Picea smithiana,Cedrus deodara,Indigofera heterantha,Pinus wallchiana and Sorbaria tomentosa,respectively.Resource use index indicating use pressure was highest for P.smithiana,C.deodara,I.heterantha and Abies pindrow,respectively.Besides native species,some non-native horticultural and agroforestry species such as Malus pumila,P.domestica,Celtis australis,etc.were also being used as fuel.Preferred species showed their availability in eight forest types whereas,population and regeneration status was poor.Therefore,immediate actions are suggested to sustain current and future demand of fuelwood.The afforestation of degraded,uncultivated and marginal lands through high quality and preferred fuel species might reduce pressure on wild and selective species.展开更多
The study of Borjomi mineral water deposit starts from the 30 s of XIX century. Chemical composition of Borjomi deposit mineral water is of great importance for study of issues of mineral water formation, creation of ...The study of Borjomi mineral water deposit starts from the 30 s of XIX century. Chemical composition of Borjomi deposit mineral water is of great importance for study of issues of mineral water formation, creation of geodynamic model of the deposit and increasing of useful resources. The impact of several strong earthquakes in the region on the wells of the deposit is described. Stability of chemical composition of Borjomi deposit mineral water is proved.展开更多
In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient ...In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient experiment was conducted based on the four specially designed water supply levels, including normal precipitation, slight drought, drought and extreme drought. Results of ANOVE showed that different water gradients had a significant effect on (1) microhabitat factors, such as soil water content and soil temperature; (2) gas exchange, such as net photosynthetic rate, stomatal conductance and transpiration rate; (3) resource use efficiency; and (4) leaf water potential. Water use efficiency of H rhamnoides could increase under moderate water stress, i.e. drought condition, while its net photosynthetic rate and transpiration rate decreased. All kinds of eco-physiological characteristics proved H. rhamnoides seedlings under all water supplies were affected by water stress more or less and that mechanism of intrinsic physiological regulation in seedlings under the extreme drought conditions had the appearance of turbulence to a certain extent. Therefore, H rhamnoides seedlings in Huangfuchuan Watershed could not acclimate to extreme drought conditions.展开更多
Urbanization is a process that is undergoing all over the world, which will speed up in the forthcoming years, especially in China as the boom of economy. On average, urbanization level is not only depended on the spe...Urbanization is a process that is undergoing all over the world, which will speed up in the forthcoming years, especially in China as the boom of economy. On average, urbanization level is not only depended on the speed, but theefficiency, particularly efficiency of using land resource which affects urbanization directly. This paper provided status quo of land resource utilization efficiency, indictors, methods and factors, and illustrated the reference of well land utilization, aiming at fostering urbanization in China.展开更多
High diversity of species in agroforestry homegardens play main agro-ecological</span></span><span><span><span style="font-family:""> roles in complex and sustainable land ...High diversity of species in agroforestry homegardens play main agro-ecological</span></span><span><span><span style="font-family:""> roles in complex and sustainable land use systems. Efforts are being made in <span>valuing and protecting the age-old practices of agroforestry on scientific basis in homegardens. This study attempted to analyse the scientific basis of households’ practices and </span></span></span></span><span><span><span style="font-family:"">to </span></span></span><span><span><span style="font-family:"">develop strategies for the promotion of sustainable agroforestry homegardens in Matara district of Sri Lanka. Selected </span></span></span><span><span><span style="font-family:"">households were interviewed measuring their concern using </span></span></span><span><span><span style="font-family:"">5-</span></span></span><span><span><span style="font-family:"">point Likert scale, and analysed the qualitative data using non-parametric statistics. The study revealed that scientific basis of household practices in agroforestry homegardens are moderate in selection of appropriate trees and plants, and management of trees <span>and plant health care. Households pay little concern on scientific basis in planning</span> and site placement, land preparation and establishment of trees/crops, and implementing proper cultural practices. There is no significant correlation between scientific basis of practices in agroforestry in relation with size of homegardens, educational level of households, and across the category of their occupations. Resources to use scientific knowledge in practice, and opportunity to improve scientific skills have moderate correlation significantly while availability of scientific information and access to scientific knowledge have significant but low correlation as applying knowledge on scientific basis. The interest to acquire scientific knowledge, and sufficient time to improve scientific knowledge, and other reasons have no significant correlation with scientific basis of household practices. Carefully planned interventions including policy adjustments and effective extension programs for learning and experimenting together with supportive programs would enhance scientific basis of household practices for agroforestry in homegardens.展开更多
Cultivation of cut flowers is a new agricultural sector in Ethiopia,which currently generates a high amount of income for the country's developments.Despite its significant contribution to economic developme...Cultivation of cut flowers is a new agricultural sector in Ethiopia,which currently generates a high amount of income for the country's developments.Despite its significant contribution to economic developments;many issues were raised from communities and environmentalists concerning its environmental performance.Based on this issue the study assesses cradle to gate of cut flower production in the Wolmera district.The main objective of the study was environmental performance evaluation of flower farms in Wolmera district,Oromia regional state,Ethiopia related to operational activities throughout entire life cycles of cut flower production.In this study,primary and secondary data were collected using ISO 14031 standard structured with LCA tool methodology.Data were collected by inventory using an on-site data collection system from its sources.Based on data collected GHG(CO2,N2O,CH4&NH3)emissions to the atmosphere were evaluated by using an inter-governmental panel on climatic changes(IPCC 2006)for inventory data and eutrophication&acidification estimated from data tested at laboratory levels.Similarly,the study also assesses banned chemicals used in the farms through inventory data assessment,and about 156 chemicals applied in the farms were collected to screen out those banned chemicals used and the two most extremely hazardous chemicals(Impulse&Meltatix)banned by WHO identified in the study.As it understood from a general assessment of all flower farms;all of them haven't EIA document established before construction in the district and production started with having less attention for EHPEA code of conducts in the flower farms which faces the environments for high impacts by emission emitted from flower farms in the district as a whole.展开更多
Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maiz...Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency(NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index(LAI), intercepted photosynthetically active radiation(IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958(ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation(DMA), grain yield, NUE, and radiation use efficiency(RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK(320 kg ha^(–1)) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m^(–2), compared to LD(5.25 plants m^(–2)), would lead to an optimal balance between yield and resource use efficiency.展开更多
Community forest management helps in mitigating deforestation and forest degradation by addressing the negative aspects of rural livelihoods such as poverty and social exclusion.It is important in regulating global cl...Community forest management helps in mitigating deforestation and forest degradation by addressing the negative aspects of rural livelihoods such as poverty and social exclusion.It is important in regulating global climate by encouraging sequestration of carbon in shoots,roots and soils.We studied the status of community forest management,forest resource harvest and carbon stocks in two community forests of the mid hill region of central and western Nepal.The study was based on primary and secondary data collected through carbon stock measurement from field visits and allometric equations,household surveys,focus group discussions,key informant interviews,and review of past studies.Socioeconomic variables such as gender,age group,livestock and landholding status were related to resource utilization,conservation,and management of community forest.Forest resources such as timber,firewood,fodder and leaf litter were harvested in sustainable ways.People were involved in forest thinning,co-management meetings,guarding and planting trees for forest conservation and management.Density and carbon stock of trees increased gradually in comparison to a previous study.We recommend further research on other community forests for more accurate and better results.展开更多
This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-maki...This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.展开更多
文摘Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.
基金Under the auspices of National Natural Science Foundation of China (No. 70673097)
文摘This paper aims to establish an index system for evaluation of agricultural resources use efficiency(ARUE) in grain production and discuss the causes of low efficiency and high consumption of agricultural resources in Changshu of Jiangsu Province,Taihe of Jiangxi Province and Ansai of Shaanxi Province in China by analyzing the data about meteorology,soil,water consumption and grain production. Agro-ecological Zone(AEZ) method was adopted to calculate the potential productivity,and synthetically multivariate equation was used to evaluate the ARUE of study areas. This paper can be concluded as:1) the agricultural resources in grain production can be classified into five categories,i.e.,climatic resources,water resources,land resources,biological resources and assistant resources,and 15 indexes were selected to evaluate their use efficiency in grain production;2) the values of ARUE in grain production are 0.5868,0.6368 and 0.5390 respectively in Changshu,Taihe and Ansai;and 3) Changshu ranks the highest among the three study areas in terms of the use efficiency of climatic resources and biological resources(evaluation values are 0.0277 and 0.1530) ,but Taihe tops the three in terms of the use efficiency of water resources,land resources and assistant resources(evaluation values are 0.0502,0.2945 and 0.1379 respectively) . However,the ARUE remains always low in Ansai for all the resources. The inefficiencies are caused by poor grain revenue in Changshu,deficient agriculture investments in Taihe and unfavorable natural conditions in Ansai.
文摘Fenlong green ecological agriculture technology (Fenlong technology), a new smash ridging farming method developed by Guangxi Academy of Agdcultural Sciences, has been elected as the recommended cultivation technique by the Ministry of Agriculture of China. It replaces the traditional plowshare with spiral drill, and its tilth depth is twice deeper than that by tractor tilthing. It also extends soil nutrient, moisture, oxygen and microorganism, the so-called "Four pools". Soil nutrient, oxygen, microorganism, light and rainfall use ratio is increased by 10%-100%, creating a platform for natural increase of more than 10% of crop yield. Its application to over 20 kinds of crops in 21 provinces has proved that the yield increases 10-30% with quality enhancing 5% and double water retaining capacity but no more input. When the application area of Fenlong could reach 67 million hm2, the amount of fertilizer can be reduced by 40-50 billion kg, saving 120-150 billion Yuan. In this paper, we put forward the strategy of "4+1" (arable, saline-alkali soil, grasslands, Sponge City + rivers) green development in China, and deepened the Fenlong cultivated tilled layer from 16.5 cm to 35 cm for 67 million hm2 arable land, ridged 13.3 million hm2 of saline-alkali soil for 35 cm, and also 35 cm for 67 million hm2 degraded steppe, which could have the following 3 effects: first, the 147 million hm2 of land with Fenlong cultivation could increase loosing soil to 315.491 billion m3, in* creasing by 159.26% for 120 million hm2 of arable land with the average tilled layer of 16.5 cm, which has loosing soil of only 198.1 billion m3, that is, the space of the land increases 1.6 times. Second, every hectare of plowland could store up to 450 m3/hm2 of natural rainfall, and the unused 60 m3 of saline-alkali soil and grasslands could store water of 102 billion m3, showing an increase of over 88.89% for the current plowland storage of 54 billion m3 at now, that is, double the natural rainfall storage capacity. Third, the two multiple increase of natural resources application can bring trillions of resource activation, environmental cleaning, food security, citizens, health, economic, ecological and social benefits, and makes the Chinese nation move forward in green development. Its application in "big scientific research" and "One Belt And One Road" will contribute Chinese strength to the world.
文摘Traditional tourism is a source of not only income and recreation but also environmental pollution and landscape resource destruction. How to leave the same or even better landscape resources to future generations is the key to sustainable development of tourism industry. Ecotourism industry could be an approach to sustainable use of landscape resources.The connotation of eco-tourism industry and its differences from the traditional tourism in resource use were given in this paper. The ecological planning for Kangyuan recreation area is taken as an example to demonstrate how to make an eco-tourism industry development plan from a system’s point of view.In terms of the characteristics of the landscape resources, advantageous geographic location and principles for eco-tourism industry development,a suitable structure of the eco-tourism industry was presented. Based on ecological suitability analysis of the landscape resource use-analysis of capacity and constraint of landscape resources, spatial distribution of the industry sectors was given.In the development process, both opportunities and risks exist, cost-benefit analysis is thus made, and cost-effective strategies and policies are provided for the eco-tourism industry development.
文摘From angles of administrative law and private law, the article analyzes relations between environmental right for citizens and the right to use environmental resources owned by company and enterprise and points out three principles to balancing two relations: A principle of equal protection, a principle that general interest is superior to special interest as well as taking an account for special interest, in specific circumstances, for example, in the circumstance that clashes between environmental and economic interests can not be avoided, policy makers can put an emphasis on more important social interest according after considering weight of each interest. Finally, the article reaches a conclusion that China should establish system of environmental right for citizens from legislative and administrative levels so that a harmonious society can be constructed with guarantee.
基金supported by the National Key Research and Development Program of China(2016YFD0300108-5)the Natural Science Foundation of Guangdong Province,China(2017A030313110,2018A030313463)+2 种基金the Discipline Team Building Project of Guangdong Academy of Agricultural Sciences,China(201617TD)the Special Fund for Scientific Innovation Strategy,China(Construction of High-Level Academy of Agricultural Science)the Guangdong Provincial Key Laboratory of Applied Botany,South China Botanical Garden,Chinese Academy of Sciences(AB2018013)。
文摘Improving both grain yield and resource use efficiencies simultaneously is a major challenge in rice production.However,few studies have focused on integrating dense planting with delayed and reduced nitrogen application to enhance grain yield,nitrogen use efficiency (NUE) and radiation use efficiency (RUE) in rice (Oryza sativa L.) in the double rice cropping system in South China.A high-yielding indica hybrid rice cultivar (Yliangyou 143) was grown in field experiments in Guangxi,South China,with three cultivation managements:farmers’practice (FP),dense planting with equal N input and delayed N application (DPEN) and dense planting with reduced N input and delayed N application (DPRN).The grain yields of DPRN reached 10.6 and 9.78 t ha^(–1) in the early and late cropping seasons,respectively,which were significantly higher than the corresponding yields of FP by 23.9–29.9%.The grain yields in DPEN and DPRN were comparable.NUE in DPRN reached 65.2–72.9 kg kg^(–1),which was 61.2–74.1% higher than that in FP and 24.6–30.2% higher than that in DPEN.RUE in DPRN achieved 1.60–1.80 g MJ^(–1),which was 28.6–37.9% higher than that in FP.The productive tiller percentage in DPRN was 7.9–36.2% higher than that in DPEN.Increases in crop growth rate,leaf area duration,N uptake from panicle initiation to heading and enhancement of the apparent transformation ratio of dry weight from stems and leaf sheaths to panicles all contributed to higher grain yield and higher resource use efficiencies in DPRN.Correlation analysis revealed that the agronomic and physiological traits mentioned above were significantly and positively correlated with grain yield.Comparison trials carried out in Guangdong in 2018 and 2019 also showed that DPRN performed better than DPEN.We conclude that DPRN is a feasible approach for simultaneously increasing grain yield,NUE and RUE in the double rice cropping system in South China.
基金supported and funded by the National Key Research and Development Program of China(2016YFD0300105,2017YFD03002 and 2016YFD0300106)the Key Research and Development Program of Hebei Province,China(20326403D)。
文摘Tillage represents an important practice that is used to dynamically regulate soil properties,and affects the grain production process and resource use efficiency of crops.The objectives of this 3-year field study carried out in the Huang-Huai-Hai(HHH) Plain of China were to compare the effects of a new deep vertical rotary tillage (DVRT) with the conventional shallow rotary tillage (CT) on soil properties,winter wheat (Triticum aestivum L.) grain yield and water and nitrogen use efficiency at different productivity levels,and to identify a comprehensive management that optimizes both grain yield and resource use efficiency in the HHH Plain.A split-plot design was adopted in field experiments in the winter wheat growing seasons of 2016–2017 (S1),2017–2018 (S2) and 2018–2019 (S3),with DVRT (conducted once in June 2016) and CT performed in the main plots.Subplots were treated with one of four targeted productivity level treatments (SH,the super high productivity level;HH,the high productivity and high efficiency productivity level;FP,the farmer productivity level;ISP,the inherent soil productivity level).The results showed that the soil bulk density was reduced and the soil water content at the anthesis stage was increased in all three years,which were due to the significant effects of DVRT.Compared with CT,grain yields,partial factor productivity of nitrogen (PFP_(N)),and water use efficiency (WUE) under DVRT were increased by 22.0,14.5 and 19.0%.Path analysis and direct correlation decomposition uncovered that grain yield variation of winter wheat was mostly contributed by the spike numbers per area under different tillage modes.General line model analysis revealed that tillage mode played a significant role on grain yield,PFP_(N) and WUE not only as a single factor,but also along with other factors(year and productivity level) in interaction manners.In addition,PFP_(N) and WUE were the highest in HH under DVRT in all three growth seasons.These results provided a theoretical basis and technical support for coordinating the high yield with high resource use efficiency of winter wheat in the resource-restricted region in the HHH Plain of China.
基金funded by the International Cooperation and Exchange of the National Science Foundation of China(31461143025,31210103906,51209220)the National Basic Research Program of China(973 Program,2011CB100405)the Special Fund for Agro-Scientific Research in the Public Interest,China(201003043)
文摘The rapidly growing demand for food, feed and fuel requires further improvements of land and water management, crop productivity and resource-use efficiencies.Combined field experimentation and crop growth modelling during the past five decades made a great leap forward in the understanding of factors that determine actual and potential yields of monocrops.The research field of production ecology developed concepts to integrate biological and biophysical processes with the aim to explore crop growth potential in contrasting environments.To understand the potential of more complex systems(multi-cropping and intercropping) we need an agro-ecosystem approach that integrates knowledge derived from various disciplines: agronomy, crop physiology, crop ecology, and environmental sciences(soil, water and climate).Adaptation of cropping systems to climate change and a better tolerance to biotic and abiotic stresses by genetic improvement and by managing diverse cropping systems in a sustainable way will be of key importance in food security.To accelerate sustainable intensification of agricultural production, it is required to develop intercropping systems that are highly productive and stable under conditions with abiotic constraints(water, nutrients and weather).Strategies to achieve sustainable intensification include developing tools to evaluate crop growth potential under more extreme climatic conditions and introducing new crops and cropping systems that are more productive and robust under conditions with abiotic stress.This paper presents some examples of sustainable intensification management of intercropping systems that proved to be tolerant to extreme climate conditions.
文摘The traditional resource use structure in Himalaya has transformed considerably during the recent past, mainly owing to the growth of population and the resultant increased demand of natural resources in the region. This transformation in resource use practices is particularly significant in the densely populated tracts of Himalaya. As a result, cultivated land, forests, pastures and rangelands have been deteriorated and depleted steadily and significantly leading to their conversion into degraded and non-productive lands. These rapid land use changes have not only disrupted the fragile ecological equilibrium in the mountains through indiscriminate deforestation, degradation of land resources and disruption of the hydrological cycle, but also have significant and irreversible adverse impacts on the rural economy, society, livelihood and life quality of mountain communities. It has been observed that the agricultural production has declined, water sources are drying up fast due to decreased ground water recharge and a large number of villages are facing enormous deficit of critical resources, such as food, fodder, firewood and water, mainly due to unabated deforestation. As a result, the rural people, particularly the women, have to travel considerably long distances to collect fodder and firewood and to fetching water. It is therefore highly imperative to evolve a comprehensive and integrated land use framework for the conservation of the biophysical environment and sustainable development of natural resources in Himalaya. The land use policy would help local communities in making use of their natural resources scientifically and judiciously, and thus help in the conservation of the biophysical environment and in the increasing of the productivity of natural resources. The study indicates that conservation of forests and other critical natural resources through community participation, generation of alternative means of livelihood, and employment in rural areas can help increase rural income as well as restore ecosystem services.
文摘Sustainable use of natural resources is different from sustainable development. As the most important natural resource, sustainable use of land resource is the essential guarantee of sustainable development. The nature of sustainable use of land resource is to retain the quantity and productivity of land resource from generation to generation.The evaluation of sustainable use of land resource is an important method to ensure land use to get onto the sustainable track. Furthermore, building index system is the key of the evaluation. In view of tendency of the evaluation indexes chosen so widely, the evaluation indexes should include only three kinds in the researches on the evaluation of sustainable use of land resource. The first is the stock and structure index of land resource, viz. Areas quantity structure of land resources. In China, it is especially paid attention to the per person index of land quantity and rate between cultivated land and farmland. The second is the productive index of land, which includes the productivity, potentiality, stability and renewal situation of land. The third is the sustained index of land environment. On the evaluation research of area level, we should lay particular emphasis on statistic indexes. With a case of Guangxi Zhuang Autonomous Region in China, the evaluation index system of sustainable land use in county area has been built in this thesis. Using the weighted average method to calculate the means of sustainable land use in each county, according to the land using situation, all counties in the autonomous region have been divided into three types. (1) Sustainable Pattern contains 18 counties, which have higher land resource productivity, stronger sustained abilities of land environment .The economic benefits of land using in these counties are obviously higher. These counties have gotten highly intensive farming, and they are all in the good circumstance. (2) Basically Sustained Pattern contains 48 counties, which productivity of land resource is of middle level. In part of counties and cities, the stock of land resource inclines to lower level, but their land using potentialities are still greater. Through changing land using pattern, these counties can rapidly enter in a good circumstance. (3) Critically Sustained Pattern contains 14 counties, which are mostly in the karst mountain areas. They have less stock of land resource, lower productivity and more extensive cultivation. The productivity of land renewing has been hindered, so it urgently need to be renovated. At last, the writers have explored the basic ways of sustainable use of land resource in Guangxi, China — (1) Retain the stock of land resource and strictly manage farmland uses. (2) Strengthen the value accounting of land resource, and control the farmland occupation of non agricultural construction. (3) Depend on technology advanced, optimize the land using structure, and promote the productive level. (4) Carry out land management all round, and improve the ecological environment of land resource. (5) Enhance evaluation researche and land monitoring, and promote the sustainable utilization level of land resource.
文摘Fuelwood is the main source of the energy in mountainous regions.Hence,annual wood consumption is very high.Information on fuelwood resources,and their extraction and availability is very scanty.Therefore,present study was carried out to study the diversity of fuelwood species,annual collection,preference and availability of fuel species in the forests.Thirty four species(25 trees and 9 shrubs) were extracted for fuel by the inhabitants.Total collection and species preference was highest for Picea smithiana,Cedrus deodara,Indigofera heterantha,Pinus wallchiana and Sorbaria tomentosa,respectively.Resource use index indicating use pressure was highest for P.smithiana,C.deodara,I.heterantha and Abies pindrow,respectively.Besides native species,some non-native horticultural and agroforestry species such as Malus pumila,P.domestica,Celtis australis,etc.were also being used as fuel.Preferred species showed their availability in eight forest types whereas,population and regeneration status was poor.Therefore,immediate actions are suggested to sustain current and future demand of fuelwood.The afforestation of degraded,uncultivated and marginal lands through high quality and preferred fuel species might reduce pressure on wild and selective species.
文摘The study of Borjomi mineral water deposit starts from the 30 s of XIX century. Chemical composition of Borjomi deposit mineral water is of great importance for study of issues of mineral water formation, creation of geodynamic model of the deposit and increasing of useful resources. The impact of several strong earthquakes in the region on the wells of the deposit is described. Stability of chemical composition of Borjomi deposit mineral water is proved.
文摘In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient experiment was conducted based on the four specially designed water supply levels, including normal precipitation, slight drought, drought and extreme drought. Results of ANOVE showed that different water gradients had a significant effect on (1) microhabitat factors, such as soil water content and soil temperature; (2) gas exchange, such as net photosynthetic rate, stomatal conductance and transpiration rate; (3) resource use efficiency; and (4) leaf water potential. Water use efficiency of H rhamnoides could increase under moderate water stress, i.e. drought condition, while its net photosynthetic rate and transpiration rate decreased. All kinds of eco-physiological characteristics proved H. rhamnoides seedlings under all water supplies were affected by water stress more or less and that mechanism of intrinsic physiological regulation in seedlings under the extreme drought conditions had the appearance of turbulence to a certain extent. Therefore, H rhamnoides seedlings in Huangfuchuan Watershed could not acclimate to extreme drought conditions.
基金Supported the Major Research Plan of the National Natural Science Foundation of China(Grant No.91325302,91425303)
文摘Urbanization is a process that is undergoing all over the world, which will speed up in the forthcoming years, especially in China as the boom of economy. On average, urbanization level is not only depended on the speed, but theefficiency, particularly efficiency of using land resource which affects urbanization directly. This paper provided status quo of land resource utilization efficiency, indictors, methods and factors, and illustrated the reference of well land utilization, aiming at fostering urbanization in China.
文摘High diversity of species in agroforestry homegardens play main agro-ecological</span></span><span><span><span style="font-family:""> roles in complex and sustainable land use systems. Efforts are being made in <span>valuing and protecting the age-old practices of agroforestry on scientific basis in homegardens. This study attempted to analyse the scientific basis of households’ practices and </span></span></span></span><span><span><span style="font-family:"">to </span></span></span><span><span><span style="font-family:"">develop strategies for the promotion of sustainable agroforestry homegardens in Matara district of Sri Lanka. Selected </span></span></span><span><span><span style="font-family:"">households were interviewed measuring their concern using </span></span></span><span><span><span style="font-family:"">5-</span></span></span><span><span><span style="font-family:"">point Likert scale, and analysed the qualitative data using non-parametric statistics. The study revealed that scientific basis of household practices in agroforestry homegardens are moderate in selection of appropriate trees and plants, and management of trees <span>and plant health care. Households pay little concern on scientific basis in planning</span> and site placement, land preparation and establishment of trees/crops, and implementing proper cultural practices. There is no significant correlation between scientific basis of practices in agroforestry in relation with size of homegardens, educational level of households, and across the category of their occupations. Resources to use scientific knowledge in practice, and opportunity to improve scientific skills have moderate correlation significantly while availability of scientific information and access to scientific knowledge have significant but low correlation as applying knowledge on scientific basis. The interest to acquire scientific knowledge, and sufficient time to improve scientific knowledge, and other reasons have no significant correlation with scientific basis of household practices. Carefully planned interventions including policy adjustments and effective extension programs for learning and experimenting together with supportive programs would enhance scientific basis of household practices for agroforestry in homegardens.
文摘Cultivation of cut flowers is a new agricultural sector in Ethiopia,which currently generates a high amount of income for the country's developments.Despite its significant contribution to economic developments;many issues were raised from communities and environmentalists concerning its environmental performance.Based on this issue the study assesses cradle to gate of cut flower production in the Wolmera district.The main objective of the study was environmental performance evaluation of flower farms in Wolmera district,Oromia regional state,Ethiopia related to operational activities throughout entire life cycles of cut flower production.In this study,primary and secondary data were collected using ISO 14031 standard structured with LCA tool methodology.Data were collected by inventory using an on-site data collection system from its sources.Based on data collected GHG(CO2,N2O,CH4&NH3)emissions to the atmosphere were evaluated by using an inter-governmental panel on climatic changes(IPCC 2006)for inventory data and eutrophication&acidification estimated from data tested at laboratory levels.Similarly,the study also assesses banned chemicals used in the farms through inventory data assessment,and about 156 chemicals applied in the farms were collected to screen out those banned chemicals used and the two most extremely hazardous chemicals(Impulse&Meltatix)banned by WHO identified in the study.As it understood from a general assessment of all flower farms;all of them haven't EIA document established before construction in the district and production started with having less attention for EHPEA code of conducts in the flower farms which faces the environments for high impacts by emission emitted from flower farms in the district as a whole.
基金the National Natural Science Foundation of China(3117 1497)the National Basic Research Program of China(973 Program,2011CB100105)+1 种基金the National Food Science and Technology of High Yield Program of China(2011BAD16B09)the Special Fund for Agro-scientific Research in the Public Interest of China(201203096)
文摘Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency(NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index(LAI), intercepted photosynthetically active radiation(IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958(ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation(DMA), grain yield, NUE, and radiation use efficiency(RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK(320 kg ha^(–1)) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m^(–2), compared to LD(5.25 plants m^(–2)), would lead to an optimal balance between yield and resource use efficiency.
基金supported by the University Grants Commission-NepalInstitute of Science and Technology+1 种基金Central Department of Environmental ScienceMinistry of Science Technology and Environment
文摘Community forest management helps in mitigating deforestation and forest degradation by addressing the negative aspects of rural livelihoods such as poverty and social exclusion.It is important in regulating global climate by encouraging sequestration of carbon in shoots,roots and soils.We studied the status of community forest management,forest resource harvest and carbon stocks in two community forests of the mid hill region of central and western Nepal.The study was based on primary and secondary data collected through carbon stock measurement from field visits and allometric equations,household surveys,focus group discussions,key informant interviews,and review of past studies.Socioeconomic variables such as gender,age group,livestock and landholding status were related to resource utilization,conservation,and management of community forest.Forest resources such as timber,firewood,fodder and leaf litter were harvested in sustainable ways.People were involved in forest thinning,co-management meetings,guarding and planting trees for forest conservation and management.Density and carbon stock of trees increased gradually in comparison to a previous study.We recommend further research on other community forests for more accurate and better results.
文摘This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.