期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of the vibration isolation performance of a seat suspension with various design modes
1
作者 Zha Jili Zhang Jianrun Nguyen Van Liem 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期363-372,共10页
Three design modes of seat suspension,i.e.,negative stiffness elements(NSEs),damping elements(DEs),and negative stiffness-damping elements(NSDEs),are proposed to evaluate the ride performance of a vehicle.Based on a d... Three design modes of seat suspension,i.e.,negative stiffness elements(NSEs),damping elements(DEs),and negative stiffness-damping elements(NSDEs),are proposed to evaluate the ride performance of a vehicle.Based on a dynamic model of a seat suspension and indexes of the root mean square deformation and acceleration of the seat suspension(x RMS)and driver s seat(a RMS),the influence of the design parameters of the NSEs,DEs,and NSDEs on the driver s ride comfort is evaluated.A genetic algorithm is then applied to optimize the parameters of the NSEs,DEs,and NSDEs.The study results indicate that the design parameters of the NSEs and NSDEs remarkably influence x RMS and a RMS,whereas those of the DEs insignificantly influence x RMS and a RMS.Based on the optimal results of the NSEs,DEs,and NSDEs,the damping force of the DEs is 98.3%lower than the restoring force of the NSEs.Therefore,the DEs are ineffective in decreasing x RMS and a RMS.Conversely,the NSEs combined with the damping coefficient of the seat suspension strongly reduce x RMS and a RMS.Consequently,the NSEs can be added to the seat suspension,and the damping coefficient of the seat suspension can also be optimized or controlled to further enhance the vehicle s ride performance. 展开更多
关键词 seat suspension negative stiffness elements damping elements ride performance genetic algorithm
下载PDF
Torsional stiffness modeling and optimization of the rubber torsion bushing for a light tracked vehicle
2
作者 姚寿文 郑鑫 +2 位作者 程海涛 黄友剑 莫容利 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期361-368,共8页
Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber c... Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber components and structural feature of the suspension. Simulations were carried out under different working conditions to obtain root mean square of vertical weighted acceleration as the evaluation index for ride performance of the all-terrain tracked vehicle,with a dynamics model of the whole vehicle based on the theoretical model of the torsional stiffness and standard road roughness as excitation input. Response surface method was used to establish the parametric optimization model of the torsional stiffness. The evaluation index showed that ride performance of the vehicle with optimized torsional stiffness model of suspension was improved compared with previous model fromexperiment. The torsional stiffness model of rubber bushing provided a theoretical basis for the design of the rubber torsion bushing in light tracked vehicles. 展开更多
关键词 rubber torsion bushing torsional stiffness model dynamics modeling ride performance optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部