期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
How to Construct a Lower Risk FOF Based on Correlation Network? The Method of Principal Component Risk Parity Asset Allocation
1
作者 BAI Wei ZHANG Junting +1 位作者 LIU Haifei LIU Kai 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第3期1052-1079,共28页
In order to build a low-risk Fund of Funds(FOF), from the perspective of correlation, the principal component factor is used to improve the traditional risk parity model. Principal component analysis is used to decomp... In order to build a low-risk Fund of Funds(FOF), from the perspective of correlation, the principal component factor is used to improve the traditional risk parity model. Principal component analysis is used to decompose the underlying assets and generate unrelated principal component factors,and then the authors can construct a principal component risk parity portfolio. The proposed empirical results based on China’s mutual fund market show that the performance of principal component risk parity portfolio(PCRPP) is better than that of equal weight portfolio(EWP) and traditional risk parity portfolio(RPP). That is to say, not only the PCRPP in this paper has much lower risk than EWP and RPP, but also slightly better than EWP and RPP in terms of average return. Moreover, the study of dividing the underlying assets shows that the PCRPP in this paper is not sensitive to the underlying assets. The PCRPP in this paper is better than EWP and RPP for both the better performing funds and the worse performing funds. In addition, the empirical results on dynamic portfolio adjustments show that it is not appropriate to adjust asset allocation too frequently when the expected rate of return is calculated using the arithmetic mean. 展开更多
关键词 Fund of funds(FOF) mutual funds portfolio risk principal component analysis risk parity portfolio
原文传递
基于Fama-French五因子风险分散投资策略
2
作者 叶钰怡 毛昱皓 卢彦翰 《合作经济与科技》 2025年第2期50-54,共5页
全球经济环境复杂多变,各国股市频繁波动,分散化投资策略成为投资者关注的重点。本文选取Fama-French五因子模型作为研究工具,选取2000年1月至2023年12月月度数据,剔除非蓝筹股,以确保数据稳定性,并通过清洗和预处理选取242只蓝筹股作... 全球经济环境复杂多变,各国股市频繁波动,分散化投资策略成为投资者关注的重点。本文选取Fama-French五因子模型作为研究工具,选取2000年1月至2023年12月月度数据,剔除非蓝筹股,以确保数据稳定性,并通过清洗和预处理选取242只蓝筹股作为样本。选出各因子影响程度较大前十家企业作为投资组合备选股,构建投资组合时采用风险预算平价Risk Parity方法进行优化。回测结果证明该策略在A股市场的有效性,为追求低风险的稳健长期投资者提供新的思路。 展开更多
关键词 风险分散 Fama-French五因子 风险预算平价risk parity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部