Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turb...Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.展开更多
To control the position of differential cylinder closed loop without usingany throttle elements, a flew idea that two speed variable pumps are used to compensate thenon-symmetric flow of differential cylinder is carri...To control the position of differential cylinder closed loop without usingany throttle elements, a flew idea that two speed variable pumps are used to compensate thenon-symmetric flow of differential cylinder is carried out. According to the leaking property of thesystem, a speed offset principle is also proposed to eliminate the cavitation and tension caused bythe leakage and condensation of oil, which makes the system be in the same state as a valvecontrolled circuit. This principle is explained theoretically and experimentally. Further therelationship that the pressures in cylinder chambers change with load and leakage, and therelationship between biasing speed and pre-load pressures in cylinder chambers are established. Theresearch has proved that the new system has similar technique features as those of controlled withservo valves, but due to the elimination of all the throttle lose the efficiency of system can beimproved greatly.展开更多
In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling a...In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.展开更多
A neural-network-based adaptive variable structure control methodology isproposed for the tracking problem of nonlinear discrete-time input-output systems. The unknowndynamics of the system are approximated via radial...A neural-network-based adaptive variable structure control methodology isproposed for the tracking problem of nonlinear discrete-time input-output systems. The unknowndynamics of the system are approximated via radial basis function neural networks. The control lawis based on sliding modes and simple to implement. The discrete-time adaptive law for tuning theweight of neural networks is presented using the adaptive filtering algorithm with residueupper-bound compensation. The application of the proposed controller to engine idle speed controldesign is discussed. The results indicate the validation and effectiveness of this approach.展开更多
CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bri...CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bridge system and CRTS-II track system form a complex nonlinear system.To investigate the seismic response of high speed railway(HSR)simply supported bridge-track system,nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established.By seismic analysis,it is found that shear alveolar in CRTS-II track system is more prone to be damaged than bridge components,such as piers,girders and bearings.The result shows that the inconsistent displacement of bridge girders is the main cause of the CRTS-II track system’s damage.Then the rotational friction damper(RFD)is adopted,which utilizes the device’s rotation and friction to dissipate seismic energy.The hysteretic behavior of RFD is studied by numerical and experimental methods.Results prove that RFD can provide good hysteretic energy dissipation ability with stable performance.Furthermore,the analysis of RFD’s influence on seismic response of HSR bridge-track system shows that RFD with larger sliding force is more effective in controlling excessive inconsistent displacement where RFD is installed,though response of other bridge spans could slightly deteriorated.展开更多
The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation ...The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.展开更多
In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematica...In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper.展开更多
This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obta...This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.展开更多
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(V...Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.展开更多
The traffic performance of urban expressway is subject to non-recurring and recurring events, which may cause heavy congestion and vehicles long queuing on ramps. The low performance may bring more traffic delay to th...The traffic performance of urban expressway is subject to non-recurring and recurring events, which may cause heavy congestion and vehicles long queuing on ramps. The low performance may bring more traffic delay to the whole network of urban road. This paper presents a new method, the joint control of variable speed control and on-ramp metering, which attempts to improve the level of traffic operations on urban expressway. By analyzing traffic flow on urban expressway, an optimum control strategy of variable speed and on-ramp metering is established in the paper.展开更多
In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is cal...In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is calculated in finite elements for a variable frequency speed control motor before and after optimization. Finally, no-load current and operation performance before and after optimization are obtained and the two results are contrasted.展开更多
Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply...Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.展开更多
The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the inta...The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the intake air control process. In this paper, to improve the responsiveness when idling with regard to disturbances, a mean-value engine model (MVEM) with dead time was constructed as the control object, and the two servo structures of sliding mode control (SMC) were studied for better idle control performance, especially in transient process of speed change. The simulation results confirmed that under the constraint condition of control input, the robustness of idle speed control that is being subjected to torque disturbances and noise disturbances can be greatly improved by use of the servo structure II.展开更多
Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two interna...Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilib- rium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and deriva- tive controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI con- troller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude sta- bilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy.展开更多
In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a ...In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.展开更多
In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer a...In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.展开更多
As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor ...As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.展开更多
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t...In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.展开更多
文摘Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.
基金This project is supported by National Natural Science Foundation of China(No.50275102) National Foundation for Abroad Return People, China (No.2001345).
文摘To control the position of differential cylinder closed loop without usingany throttle elements, a flew idea that two speed variable pumps are used to compensate thenon-symmetric flow of differential cylinder is carried out. According to the leaking property of thesystem, a speed offset principle is also proposed to eliminate the cavitation and tension caused bythe leakage and condensation of oil, which makes the system be in the same state as a valvecontrolled circuit. This principle is explained theoretically and experimentally. Further therelationship that the pressures in cylinder chambers change with load and leakage, and therelationship between biasing speed and pre-load pressures in cylinder chambers are established. Theresearch has proved that the new system has similar technique features as those of controlled withservo valves, but due to the elimination of all the throttle lose the efficiency of system can beimproved greatly.
基金Fundamental Research Funds for the Central Universities(No.2016JBM051)
文摘In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.
基金This project is supported by National Natural Science Foundation of China (No.59806007)
文摘A neural-network-based adaptive variable structure control methodology isproposed for the tracking problem of nonlinear discrete-time input-output systems. The unknowndynamics of the system are approximated via radial basis function neural networks. The control lawis based on sliding modes and simple to implement. The discrete-time adaptive law for tuning theweight of neural networks is presented using the adaptive filtering algorithm with residueupper-bound compensation. The application of the proposed controller to engine idle speed controldesign is discussed. The results indicate the validation and effectiveness of this approach.
基金The authors are grateful for the financial support from the Fundamental Research Funds for the Central Universities of Central South University(Project No.502221804)the National Natural Science Foundation of China(Project Nos.51878674,51878563)+1 种基金the Foundation for Key Youth Scholars in Hunan Province(Project No.150220077)the Project of Yuying Plan in Central South University(Project No.502034002).Any opinions,findings,and conclusions or recommendations expressed in this paper are those of the authors.
文摘CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bridge system and CRTS-II track system form a complex nonlinear system.To investigate the seismic response of high speed railway(HSR)simply supported bridge-track system,nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established.By seismic analysis,it is found that shear alveolar in CRTS-II track system is more prone to be damaged than bridge components,such as piers,girders and bearings.The result shows that the inconsistent displacement of bridge girders is the main cause of the CRTS-II track system’s damage.Then the rotational friction damper(RFD)is adopted,which utilizes the device’s rotation and friction to dissipate seismic energy.The hysteretic behavior of RFD is studied by numerical and experimental methods.Results prove that RFD can provide good hysteretic energy dissipation ability with stable performance.Furthermore,the analysis of RFD’s influence on seismic response of HSR bridge-track system shows that RFD with larger sliding force is more effective in controlling excessive inconsistent displacement where RFD is installed,though response of other bridge spans could slightly deteriorated.
基金Project(G-0805-10156) supported by US Energy Foundation
文摘The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.
基金supported by the National Natural Science Foundation of China(Nos.11372130,11290153,and 11290154)
文摘In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper.
基金supported by the Key Project of National Natural Science Foundation of China(61533009)the 111 Project(B08015)the Research Projects(KQC201105300002A,JCY20130329152125731,JCYJ20150403161923519)
文摘This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.
基金the output of a research project (Title: Application of Doubly Fed Asynchronous machine in Pumped Storage Hydropower Plant in Generate Mode, supported by Islamic Azad University South Tehran Branch)
文摘Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.
文摘The traffic performance of urban expressway is subject to non-recurring and recurring events, which may cause heavy congestion and vehicles long queuing on ramps. The low performance may bring more traffic delay to the whole network of urban road. This paper presents a new method, the joint control of variable speed control and on-ramp metering, which attempts to improve the level of traffic operations on urban expressway. By analyzing traffic flow on urban expressway, an optimum control strategy of variable speed and on-ramp metering is established in the paper.
文摘In the paper, the method to optimize the rotor structure in variable frequency speed control motors is introduced. The saturation and the skin effect are considered and 2D no-load and load electromagnetic field is calculated in finite elements for a variable frequency speed control motor before and after optimization. Finally, no-load current and operation performance before and after optimization are obtained and the two results are contrasted.
文摘Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers.
文摘The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the intake air control process. In this paper, to improve the responsiveness when idling with regard to disturbances, a mean-value engine model (MVEM) with dead time was constructed as the control object, and the two servo structures of sliding mode control (SMC) were studied for better idle control performance, especially in transient process of speed change. The simulation results confirmed that under the constraint condition of control input, the robustness of idle speed control that is being subjected to torque disturbances and noise disturbances can be greatly improved by use of the servo structure II.
基金supported by the Innovation Foundation of BUAA for Ph.D Graduatesthe Innovation Foundation of the National Laboratory of Space Intelligent Control
文摘Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilib- rium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and deriva- tive controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI con- troller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude sta- bilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy.
文摘In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.
基金National Natural Science Foundation of China(No.51275375,No.51509006)Shaanxi Provincial Natural Science Basic Research Plan(No.2014JQ7246)+1 种基金The Science and Technology of Hubei Province(No.B2015115)Doctoral Research Foundation of Hubei University of Automotive Technology(No.BK201403)
文摘In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.
文摘As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.
文摘In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.