Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and ...Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.展开更多
This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal cha...This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal changes from 1957 to 2002.The main findings are as follows:(1) The annual runoff processes of the three headwaters of the Tarim River are com-plex nonlinear systems with fractal as well as chaotic dynamics.(2) The correlation dimensions of attractor derived from the time series of the annual runoff for the Hotan,Yarkand and Aksu rivers are all greater than 3.0 and non-integral,implying that all three rivers are chaotic dynamical systems that are sensitive to initial conditions,and the dynamic modeling of their annual runoff process requires at least four independent variables.(3) The time series of annual runoff in each river presents a long-term correlation characteristic.The Hurst exponent for the period of 1989 to 2002 suggests that we may expect to see an increasing trend in the annual runoff of the Aksu and Yarkand rivers in the years after 2002,but a decreasing tendency for the Hotan River in the same period.展开更多
Debris flow runoff process is one of key parameters for the design of emergency measures and control engineering. The Shenxi gully in Dujiangyan region,located in the meizoseismal areas of Wenchuan earthquake,was sele...Debris flow runoff process is one of key parameters for the design of emergency measures and control engineering. The Shenxi gully in Dujiangyan region,located in the meizoseismal areas of Wenchuan earthquake,was selected as the study area. Based on the research of hazard inducing environment,a soil conservation service( SCS) hydrological model was used to simulate the process of water flow,and then the debris flow runoff process was calculated using the empirical formula combining the results from the SCS hydrological model. Taking the debris flow event occurred on July 9th,2013 as an example,the peak discharges of water flow and debris flow were calculated as 162. 12 and 689. 22 m3/s,with error of 6. 03% compared to the measured values. The debris flow confluence process lasted 1. 8h, which was similar with the actual result. The proposed methodology can be applied to predict the debris flow runoff process in quake-hit areas of the Wenchuan earthquake and is of great importance for debris flow mitigation.展开更多
Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemi...Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemistry (e.g. major ions, pH, EC and TDS) meas- urement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca^2^, Mg2+, Na^+ and CI) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou g^acier basin during June 2012 to September 2013. Results showed that 6D and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of 6D and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably im- plied that the glacier runoff was mainly originated from glacier melting and precipitation supply The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.展开更多
The runoff and runoff process of Eucalyptus plantations natural watershed were studied to provide guidance for scientific evaluation of water conservation capacities of Eucalyptus plantations,compared with the Pinus m...The runoff and runoff process of Eucalyptus plantations natural watershed were studied to provide guidance for scientific evaluation of water conservation capacities of Eucalyptus plantations,compared with the Pinus massoniana forest natural watershed. The runoff volumes of Eucalyptus plantations and P. massoniana forest natural watersheds were continuously monitored using the small watershed runoff monitoring method and the automatic data collection devices from August,2013 to December,2016,and effects of heavy rainfall and continuous rainfall on the runoff process were studied. Results showed that the annual runoff coefficient of Eucalyptus plantations natural watershed was 0. 050,and 55. 4% lower than P. massoniana forest( 0. 112),with the difference being significant( P 〈 0. 01). Total runoff duration,time of maximum runoff lagging behind rainfall peak,and runoff duration caused by a heavy rainfall process( amounting to 147. 5 mm) between the two kinds of forest watersheds were significant different,those of Eucalyptus plantations were 35. 6 mm,0. 2 h and 13. 8 h,respectively,while those of P. massoniana forest were28. 5 mm,0. 7 h and 35. 5 h,respectively. Eucalyptus plantations natural watershed produced only 4-days runoff,and runoff depth amounted to3. 8 mm with a 7-days continuous precipitation process of rainfall with 125. 0 mm,while P. massoniana forest natural watershed produced continuously 13-days runoff,and the runoff depth was 10. 1 mm. In conclusion,water conservation capacity of Eucalyptus plantations is obviously lower than P. massoniana forest.展开更多
In this paper, a novel and efficient study on the hydrological processes of storm runoff from catchments of different land uses is conducted. The motivation is to precisely simulate the hydrological processes of storm...In this paper, a novel and efficient study on the hydrological processes of storm runoff from catchments of different land uses is conducted. The motivation is to precisely simulate the hydrological processes of storm runoff in the agricultural catchments with different patterns of land uses, i.e., forest, paddy, and upland, respectively. As it is discussed in this paper, different land use leads to different characteristics of storm runoff. In order to understand the changes in the hydrological processes of storm runoff from catchments of different land uses, the effects of rainfall intensity, initial soil moisture deficit, evapotranspiration rate, percolation rate, and retention capacity on hydrological processes of the catchments are taken into consideration. According to the principle of water balance, a general model to connect the separate hydrological processes is developed; then, the individual hydrological process is studied in detail: Firstly, the daily evaporation is calculated according to the relation between the actual evapotranspiration and the potential evapotranspiration rate; Secondly, the retention of storm runoff is plotted against the total rainfall, and the maximum storage is calculated; Thirdly, the percolation rate is calculated for each catchment.展开更多
[Objective]The aim was to study the simulation test of hydrodynamics process of erosion.[Method]Through the runoff scouring experiment,the property of soil erosion in Damaoqi grassland in Inner Mongolia was studied.Th...[Objective]The aim was to study the simulation test of hydrodynamics process of erosion.[Method]Through the runoff scouring experiment,the property of soil erosion in Damaoqi grassland in Inner Mongolia was studied.The process and mechanism of soil erosion were studied.[Result]The results of runoff scouring experiment on inner Damaoqi steppe showed that the mean flow velocity of change slope increased with the discharge of flow and slope gradient.The mean silt content rate,the mean sediment transport rate and the mean sheer stress all increased when the discharge of flow increased,which changed in parabolic form with the increase of slope gradient and the critical gradient is 25°.The relationship between the mean sediment transport rate and the mean sheer stress was linear.[Conclusion]The study provided theoretic basis for the report of soil erosion in grassland in China.展开更多
The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous...The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous landscapes. The runoff coefficient is a suitable tool to represent precipitation-runoff relations, but the spatial distribution of the runoff coefficient across tectonically active mountains in semi-arid environments has received little attention because of limited data availability. We calculated annual runoff coefficients over 22 years for 26 drainage basins across the semi-arid Qilian Mountains based on:(i) annual discharge records;and(ii) the China Meteorological Forcing Dataset to enhance our understanding of the precipitation-runoff processes. The mean annual runoff coefficients show no obvious spatial trends. When compared to potential controlling factors, mean annual runoff coefficients are highly correlated with mean slope rather than any climatic characteristics(e.g., mean annualprecipitation and Normalized Difference Vegetation Index). The slope-dependent runoff coefficient could theoretically have enhanced the topographic control on erosion rates and dampen the influence of precipitation. The enhanced discharge for drainage basins with less precipitation but steep topography in the western Qilian Mountains will enable fluvial incision to keep pace with ongoing uplift caused by the northward growth of the Qilian Mountains. The geomorphic implications are that tectonic rather than climatic factors are more significant for long-term landscape evolution in arid and semi-arid contexts.展开更多
基金supported by the National Natural Science Foundation of China (41001066)the National Basic Research Program of China (Program 973) (2009CB421308)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes (201101049)
文摘Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.
基金Knowledge Innovation Project of CAS, No.KZCX2-XB2-03Major Direction of Knowledge Innovation Project of CAS,No.KZCX2-YW-127Shanghai Academic Discipline Project (Human Geography),No.B410
文摘This paper attempted to identify fractal and chaotic characteristics of the annual runoff processes in headwaters of the Tarim River.Methods of fractal analyses were used to explore several aspects of the temporal changes from 1957 to 2002.The main findings are as follows:(1) The annual runoff processes of the three headwaters of the Tarim River are com-plex nonlinear systems with fractal as well as chaotic dynamics.(2) The correlation dimensions of attractor derived from the time series of the annual runoff for the Hotan,Yarkand and Aksu rivers are all greater than 3.0 and non-integral,implying that all three rivers are chaotic dynamical systems that are sensitive to initial conditions,and the dynamic modeling of their annual runoff process requires at least four independent variables.(3) The time series of annual runoff in each river presents a long-term correlation characteristic.The Hurst exponent for the period of 1989 to 2002 suggests that we may expect to see an increasing trend in the annual runoff of the Aksu and Yarkand rivers in the years after 2002,but a decreasing tendency for the Hotan River in the same period.
基金Water Resources Science and Technology Innovation Project of Guangdong Province,China(No.2016-15)National Natural Science Foundation of China(No.41372331)Science and Technology Planning Projects of Guangdong Province,China(Nos.2014A020219006,2014A020219006)
文摘Debris flow runoff process is one of key parameters for the design of emergency measures and control engineering. The Shenxi gully in Dujiangyan region,located in the meizoseismal areas of Wenchuan earthquake,was selected as the study area. Based on the research of hazard inducing environment,a soil conservation service( SCS) hydrological model was used to simulate the process of water flow,and then the debris flow runoff process was calculated using the empirical formula combining the results from the SCS hydrological model. Taking the debris flow event occurred on July 9th,2013 as an example,the peak discharges of water flow and debris flow were calculated as 162. 12 and 689. 22 m3/s,with error of 6. 03% compared to the measured values. The debris flow confluence process lasted 1. 8h, which was similar with the actual result. The proposed methodology can be applied to predict the debris flow runoff process in quake-hit areas of the Wenchuan earthquake and is of great importance for debris flow mitigation.
基金National Natural Science Foundation of China,No.41301065The West Light Program for Talent Cultivation of Chinese Academy of Sciences
文摘Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemistry (e.g. major ions, pH, EC and TDS) meas- urement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca^2^, Mg2+, Na^+ and CI) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou g^acier basin during June 2012 to September 2013. Results showed that 6D and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of 6D and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably im- plied that the glacier runoff was mainly originated from glacier melting and precipitation supply The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.
基金Supported by Special Project for Scientific Research of Public Welfare Industry of Ministry of Water Resources(201301044)
文摘The runoff and runoff process of Eucalyptus plantations natural watershed were studied to provide guidance for scientific evaluation of water conservation capacities of Eucalyptus plantations,compared with the Pinus massoniana forest natural watershed. The runoff volumes of Eucalyptus plantations and P. massoniana forest natural watersheds were continuously monitored using the small watershed runoff monitoring method and the automatic data collection devices from August,2013 to December,2016,and effects of heavy rainfall and continuous rainfall on the runoff process were studied. Results showed that the annual runoff coefficient of Eucalyptus plantations natural watershed was 0. 050,and 55. 4% lower than P. massoniana forest( 0. 112),with the difference being significant( P 〈 0. 01). Total runoff duration,time of maximum runoff lagging behind rainfall peak,and runoff duration caused by a heavy rainfall process( amounting to 147. 5 mm) between the two kinds of forest watersheds were significant different,those of Eucalyptus plantations were 35. 6 mm,0. 2 h and 13. 8 h,respectively,while those of P. massoniana forest were28. 5 mm,0. 7 h and 35. 5 h,respectively. Eucalyptus plantations natural watershed produced only 4-days runoff,and runoff depth amounted to3. 8 mm with a 7-days continuous precipitation process of rainfall with 125. 0 mm,while P. massoniana forest natural watershed produced continuously 13-days runoff,and the runoff depth was 10. 1 mm. In conclusion,water conservation capacity of Eucalyptus plantations is obviously lower than P. massoniana forest.
基金Supported by the Natural Science Foundation of Hubei Province (2005ABA290)
文摘In this paper, a novel and efficient study on the hydrological processes of storm runoff from catchments of different land uses is conducted. The motivation is to precisely simulate the hydrological processes of storm runoff in the agricultural catchments with different patterns of land uses, i.e., forest, paddy, and upland, respectively. As it is discussed in this paper, different land use leads to different characteristics of storm runoff. In order to understand the changes in the hydrological processes of storm runoff from catchments of different land uses, the effects of rainfall intensity, initial soil moisture deficit, evapotranspiration rate, percolation rate, and retention capacity on hydrological processes of the catchments are taken into consideration. According to the principle of water balance, a general model to connect the separate hydrological processes is developed; then, the individual hydrological process is studied in detail: Firstly, the daily evaporation is calculated according to the relation between the actual evapotranspiration and the potential evapotranspiration rate; Secondly, the retention of storm runoff is plotted against the total rainfall, and the maximum storage is calculated; Thirdly, the percolation rate is calculated for each catchment.
基金Supported by the Scientific Research Program of China Institute of Water Resources and Hydropower Research (MKS2010001)
文摘[Objective]The aim was to study the simulation test of hydrodynamics process of erosion.[Method]Through the runoff scouring experiment,the property of soil erosion in Damaoqi grassland in Inner Mongolia was studied.The process and mechanism of soil erosion were studied.[Result]The results of runoff scouring experiment on inner Damaoqi steppe showed that the mean flow velocity of change slope increased with the discharge of flow and slope gradient.The mean silt content rate,the mean sediment transport rate and the mean sheer stress all increased when the discharge of flow increased,which changed in parabolic form with the increase of slope gradient and the critical gradient is 25°.The relationship between the mean sediment transport rate and the mean sheer stress was linear.[Conclusion]The study provided theoretic basis for the report of soil erosion in grassland in China.
基金supported financially by the Natural Science Foundation of China(Grant Nos.41971001,41730637 and 41501002]supported by the Open Foundation of Research institute of Qilian Mountains
文摘The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous landscapes. The runoff coefficient is a suitable tool to represent precipitation-runoff relations, but the spatial distribution of the runoff coefficient across tectonically active mountains in semi-arid environments has received little attention because of limited data availability. We calculated annual runoff coefficients over 22 years for 26 drainage basins across the semi-arid Qilian Mountains based on:(i) annual discharge records;and(ii) the China Meteorological Forcing Dataset to enhance our understanding of the precipitation-runoff processes. The mean annual runoff coefficients show no obvious spatial trends. When compared to potential controlling factors, mean annual runoff coefficients are highly correlated with mean slope rather than any climatic characteristics(e.g., mean annualprecipitation and Normalized Difference Vegetation Index). The slope-dependent runoff coefficient could theoretically have enhanced the topographic control on erosion rates and dampen the influence of precipitation. The enhanced discharge for drainage basins with less precipitation but steep topography in the western Qilian Mountains will enable fluvial incision to keep pace with ongoing uplift caused by the northward growth of the Qilian Mountains. The geomorphic implications are that tectonic rather than climatic factors are more significant for long-term landscape evolution in arid and semi-arid contexts.