A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
Objective It has long been controversial that whether authigenic chlorite coatings in sandstone reservoirs can prevent precipitation of siliceous cements. It is commonly believed that chlorite coatings (also called c...Objective It has long been controversial that whether authigenic chlorite coatings in sandstone reservoirs can prevent precipitation of siliceous cements. It is commonly believed that chlorite coatings (also called chlorite films, chlorite linings, or chlorite rims) may prevent quartz overgrowth, and thus help the preservation of original pores in sandstone reservoirs. Recently, however, this assumption has been challenged by reservoir geologists. This dispute cannot be solved by mere analysis of thin sections, nor by chemical equations and diagenesis analysis. The main objective of the present contribution is to shed light on this problem on the basis of sandstone samples from the Permian Shanxi and Shihezi Formations in the eastern part of the Sulige gas field, Ordos Basin in central China.展开更多
Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter r...Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter referred to as Xu2 Member)in the Yuanba area,northern Sichuan Basin,were studied.Combined with the analysis of the main controlling factors of production capacity,the types and characteristics of the sweet spots in the tight sandstone gas reservoir were determined.The evaluation standards and geological models of the sweet spots were established.The results are as follows:(1)There are bedding-parallel fracture-,fault-induced fracture-,and pore-dominated sweet spots in the tight sandstone gas reservoirs of the Xu2 Member.(2)The bedding parallel fracture-dominated sweet spots have developed in quartz sandstones with well-developed horizontal fractures and micro-fractures.They are characterized by high permeability and high gas output during production tests.This kind of sweet spots is thin and shows a limited distribution.Their logging responses show extremely low gamma-ray(GR)values and medium-high AC values.Moreover,the bedding parallel fracture-dominated sweet spots can be mapped using seismic methods.(3)The fault-induced fracture-dominated sweet spots have welldeveloped medium-and high-angle shear fractures.Their logging responses show an increase in peaks of AC values and total hydrocarbon content and a decrease in resistivity.Seismically,the areas with welldeveloped fault-induced fracture-dominated sweet spots can be effectively mapped using the properties such as seismic entropy and maximum likelihood.(4)The pore-dominated sweet spots are developed in medium-grained feldspathic litharenites with good reservoir properties.They are thick and widely distributed.(5)These three types of sweet spots are mainly determined by sedimentation,diagenesis,and tectonism.The bedding parallel fracture-dominated sweet spots are distributed in beachbar quartz sandstones on the top of the 1st sand layer group in the Xu2 Member,which develops in a shore-shallow lake environment.The fault-induced fracture-dominated sweet spots mainly occur near faults.They are increasingly developed in areas closer to faults.The pore-dominated sweet spots are primarily distributed in the 2nd and 3rd sand layer groups,which lie in the development areas of distributary channels near provenances at western Yuanba area.Based on the geological and seismic data,a comprehensive evaluation standard for these three types of sweet spots of the tight sandstone reservoirs in the Xu2 Member has been established,which,on the one hand,lays the foundation for the development and evaluation of the gas reservoir,and on the other hand,deepens the understanding of sweet spot in the tight sandstone gas reservoirs.展开更多
A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data cluste...A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data clustering and local wave decomposition based seismic attenuation characteristics,relative wave impedance features of prestack seismic data as the selected multiple attributes for one tight sandstone gas reservoir and further employ principal component analysis combined with quantum neural networks for giving the distinguishing results of the weak responses of the gas reservoir,which is hard to detect by using the conventional technologies.For the seismic data from a tight sandstone gas reservoir in the Sichuan basin,China,we found that multiattributes based quantum neural networks can effectively capture the weak seismic responses features associated with gas saturation in the gas reservoir.This study is hoped to be useful as an aid for hydrocarbon detections for the gas reservoir with the characteristics of the weak seismic responses by the complement of the multiattributes based quantum neural networks.展开更多
Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using l...Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.展开更多
Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is ch...Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region.展开更多
The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple fa...The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature.展开更多
The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata ...The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.展开更多
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
基金supported by the National Natural Science Foundation of China(grant No.41402120)Shandong University of Science and Technology Research Fund(grant No.2015TDJH101)
文摘Objective It has long been controversial that whether authigenic chlorite coatings in sandstone reservoirs can prevent precipitation of siliceous cements. It is commonly believed that chlorite coatings (also called chlorite films, chlorite linings, or chlorite rims) may prevent quartz overgrowth, and thus help the preservation of original pores in sandstone reservoirs. Recently, however, this assumption has been challenged by reservoir geologists. This dispute cannot be solved by mere analysis of thin sections, nor by chemical equations and diagenesis analysis. The main objective of the present contribution is to shed light on this problem on the basis of sandstone samples from the Permian Shanxi and Shihezi Formations in the eastern part of the Sulige gas field, Ordos Basin in central China.
基金the Science&Technology Department of SINOPEC(No.P19012-2).
文摘Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter referred to as Xu2 Member)in the Yuanba area,northern Sichuan Basin,were studied.Combined with the analysis of the main controlling factors of production capacity,the types and characteristics of the sweet spots in the tight sandstone gas reservoir were determined.The evaluation standards and geological models of the sweet spots were established.The results are as follows:(1)There are bedding-parallel fracture-,fault-induced fracture-,and pore-dominated sweet spots in the tight sandstone gas reservoirs of the Xu2 Member.(2)The bedding parallel fracture-dominated sweet spots have developed in quartz sandstones with well-developed horizontal fractures and micro-fractures.They are characterized by high permeability and high gas output during production tests.This kind of sweet spots is thin and shows a limited distribution.Their logging responses show extremely low gamma-ray(GR)values and medium-high AC values.Moreover,the bedding parallel fracture-dominated sweet spots can be mapped using seismic methods.(3)The fault-induced fracture-dominated sweet spots have welldeveloped medium-and high-angle shear fractures.Their logging responses show an increase in peaks of AC values and total hydrocarbon content and a decrease in resistivity.Seismically,the areas with welldeveloped fault-induced fracture-dominated sweet spots can be effectively mapped using the properties such as seismic entropy and maximum likelihood.(4)The pore-dominated sweet spots are developed in medium-grained feldspathic litharenites with good reservoir properties.They are thick and widely distributed.(5)These three types of sweet spots are mainly determined by sedimentation,diagenesis,and tectonism.The bedding parallel fracture-dominated sweet spots are distributed in beachbar quartz sandstones on the top of the 1st sand layer group in the Xu2 Member,which develops in a shore-shallow lake environment.The fault-induced fracture-dominated sweet spots mainly occur near faults.They are increasingly developed in areas closer to faults.The pore-dominated sweet spots are primarily distributed in the 2nd and 3rd sand layer groups,which lie in the development areas of distributary channels near provenances at western Yuanba area.Based on the geological and seismic data,a comprehensive evaluation standard for these three types of sweet spots of the tight sandstone reservoirs in the Xu2 Member has been established,which,on the one hand,lays the foundation for the development and evaluation of the gas reservoir,and on the other hand,deepens the understanding of sweet spot in the tight sandstone gas reservoirs.
基金Supported in part by the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(No.2021ZYD0030)in part by the National Natural Science Foundation of China(Nos.41804140,42074163,41974160,42030812).
文摘A direct hydrocarbon detection is performed by using multi-attributes based quantum neural networks with gas fields.The proposed multi-attributes based quantum neural networks for hydrocarbon detection use data clustering and local wave decomposition based seismic attenuation characteristics,relative wave impedance features of prestack seismic data as the selected multiple attributes for one tight sandstone gas reservoir and further employ principal component analysis combined with quantum neural networks for giving the distinguishing results of the weak responses of the gas reservoir,which is hard to detect by using the conventional technologies.For the seismic data from a tight sandstone gas reservoir in the Sichuan basin,China,we found that multiattributes based quantum neural networks can effectively capture the weak seismic responses features associated with gas saturation in the gas reservoir.This study is hoped to be useful as an aid for hydrocarbon detections for the gas reservoir with the characteristics of the weak seismic responses by the complement of the multiattributes based quantum neural networks.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of SINOPEC.
文摘Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.
基金supported by the National Natural Science Foundation of China(Grant numbers 42274160 and 42074153).
文摘Seismic characterizing of tight gas sandstone (TGS) reservoirs is essential for identifying promising gas-bearing regions. However, exploring the petrophysical significance of seismic-inverted elastic properties is challenging due to the complex microstructures in TGSs. Meanwhile, interbedded structures of sandstone and mudstone intensify the difficulty in accurately extracting the crucial tight sandstone properties. An integrated rock-physics-based framework is proposed to estimate the reservoir quality of TGSs from seismic data. TGSs with complex pore structures are modeled using the double-porosity model, providing a practical tool to compute rock physics templates for reservoir parameter estimation. The VP/VS ratio is utilized to predict the cumulative thickness of the TGS reservoirs within the target range via the threshold value evaluated from wireline logs for lithology discrimination. This approach also facilitates better capturing the elastic properties of the TGSs for quantitative seismic interpretation. Total porosity is estimated from P-wave impedance using the correlation obtained based on wireline log analysis. After that, the three-dimensional rock-physics templates integrated with the estimated total porosity are constructed to interpret microfracture porosity and gas saturation from velocity ratio and bulk modulus. The integrated framework can optimally estimate the parameters dominating the reservoir quality. The results of the indicator proposed based on the obtained parameters are in good agreement with the gas productions and can be utilized to predict promising TGS reservoirs. Moreover, the results suggest that considering microfracture porosity allows a more accurate prediction of high-quality reservoirs, further validating the applicability of the proposed method in the studied region.
基金supported by the National Science Foundation (51904324, 51674279, 51804328)the Major National Science and Technology Project (2017ZX05009-001, 2017ZX05072)+3 种基金the Key Research and Development Program (2018GSF116004)the China Postdoctoral Science Foundation (2019T120616)the Funding for Scientific Research of China University of Petroleum East China (YJ20170013)Graduate Innovative Engineering project (YCX2019023)。
文摘The irreducible water saturation(Swir) is a significant parameter for relative permeability prediction and initial hydrocarbon reserves estimation.However,the complex pore structures of the tight rocks and multiple factors of the formation conditions make the parameter difficult to be accurately predicted by the conventional methods in tight gas reservoirs.In this study,a new model was derived to calculate Swir based on the capillary model and the fractal theory.The model incorporated different types of immobile water and considered the stress effect.The dead or stationary water(DSW) was considered in this model,which described the phenomena of water trapped in the dead-end pores due to detour flow and complex pore structures.The water film,stress effect and formation temperature were also considered in the proposed model.The results calculated by the proposed model are in a good agreement with the experimental data.This proves that for tight sandstone gas reservoirs the Swir calculated from the new model is more accurate.The irreducible water saturation calculated from the new model reveals that Swir is controlled by the critical capillary radius,DSW coefficient,effective stress and formation temperature.
基金funded by the Natural Science Foundation of Shandong Province (ZR202103050722)National Natural Science Foundation of China (41174098)。
文摘The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.