Pervasive schemes are the significant techniques that allow intelligent communication among the devices without any human intervention.Recently Internet of Vehicles(IoVs)has been introduced as one of the applications ...Pervasive schemes are the significant techniques that allow intelligent communication among the devices without any human intervention.Recently Internet of Vehicles(IoVs)has been introduced as one of the applications of pervasive computing that addresses the road safety challenges.Vehicles participating within the IoV are embedded with a wide range of sensors which operate in a real time environment to improve the road safety issues.Various mechanisms have been proposed which allow automatic actions based on uncertainty of sensory and managed data.Due to the lack of existing transportation integration schemes,IoV has not been completely explored by business organizations.In order to tackle this problem,we have proposed a novel trusted mechanism in IoV during communication,sensing,and record storing.Our proposed method uses trust based analysis and subjective logic functions with the aim of creating a trust environment for vehicles to communicate.In addition,the subjective logic function is integrated with multi-attribute SAW scheme to improve the decision metrics of authenticating nodes.The trust analysis depends on a variety of metrics to ensure an accurate identification of legitimate vehicles embedded with IoT devices ecosystem.The proposed scheme is determined and verified rigorously through various IoT devices and decision making metrics against a baseline solution.The simulation results show that the proposed scheme leads to 88%improvement in terms of better identification of legitimate nodes,road accidents and message alteration records during data transmission among vehicles as compared to the baseline approach.展开更多
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
The state of art pertaining to vertical handover decisions in next-generation wireless networks provides a detailed overview of vertical handover studies.This paper classifies the research initiatives under the vertic...The state of art pertaining to vertical handover decisions in next-generation wireless networks provides a detailed overview of vertical handover studies.This paper classifies the research initiatives under the vertical handover decision mechanism for heterogeneous wireless networks.A fair comparison of traditional and recent techniques is drafted to obtain direction of the vertical handover decision.Several issues related to seamless support on mobility management techniques have been described in the literature.The next-generation wireless network promises to offer enhanced data services compared to other networks in mobile communication.Since all next generation network(NGN)is an IP-based network,challenges drive toward providing quality of service in the handover process.The necessity of handover process is a seamless connection.The handover operations that minimize or even target the elimination of delay in new network connection establishment are most welcomed.However,frequent disconnection and inefficient seamless handovers result in handover operation failures.Most of the existing methods on handover decisions are based on mobile-controlled handovers.Here,the decisions are in-corporate in the mobile devices.Several mobile-controlled handovers take a single parameter or two or more additional parameters as a combination to evaluate the policy decision.These approaches are carefully studied and classified.展开更多
A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set ...A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles.展开更多
基金funded by the Abu Dhabi University,Faculty Research Incentive Grant(19300483–Adel Khelifi),United Arab Emirates.Link to Sponsor website:https://www.adu.ac.ae/research/research-at-adu/overview.
文摘Pervasive schemes are the significant techniques that allow intelligent communication among the devices without any human intervention.Recently Internet of Vehicles(IoVs)has been introduced as one of the applications of pervasive computing that addresses the road safety challenges.Vehicles participating within the IoV are embedded with a wide range of sensors which operate in a real time environment to improve the road safety issues.Various mechanisms have been proposed which allow automatic actions based on uncertainty of sensory and managed data.Due to the lack of existing transportation integration schemes,IoV has not been completely explored by business organizations.In order to tackle this problem,we have proposed a novel trusted mechanism in IoV during communication,sensing,and record storing.Our proposed method uses trust based analysis and subjective logic functions with the aim of creating a trust environment for vehicles to communicate.In addition,the subjective logic function is integrated with multi-attribute SAW scheme to improve the decision metrics of authenticating nodes.The trust analysis depends on a variety of metrics to ensure an accurate identification of legitimate vehicles embedded with IoT devices ecosystem.The proposed scheme is determined and verified rigorously through various IoT devices and decision making metrics against a baseline solution.The simulation results show that the proposed scheme leads to 88%improvement in terms of better identification of legitimate nodes,road accidents and message alteration records during data transmission among vehicles as compared to the baseline approach.
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.
文摘The state of art pertaining to vertical handover decisions in next-generation wireless networks provides a detailed overview of vertical handover studies.This paper classifies the research initiatives under the vertical handover decision mechanism for heterogeneous wireless networks.A fair comparison of traditional and recent techniques is drafted to obtain direction of the vertical handover decision.Several issues related to seamless support on mobility management techniques have been described in the literature.The next-generation wireless network promises to offer enhanced data services compared to other networks in mobile communication.Since all next generation network(NGN)is an IP-based network,challenges drive toward providing quality of service in the handover process.The necessity of handover process is a seamless connection.The handover operations that minimize or even target the elimination of delay in new network connection establishment are most welcomed.However,frequent disconnection and inefficient seamless handovers result in handover operation failures.Most of the existing methods on handover decisions are based on mobile-controlled handovers.Here,the decisions are in-corporate in the mobile devices.Several mobile-controlled handovers take a single parameter or two or more additional parameters as a combination to evaluate the policy decision.These approaches are carefully studied and classified.
基金National Natural Science Foundation ofChina( No.90 2 0 5 0 0 6) and Shanghai Rising Star Program( No.0 2 QG14 0 3 1)
文摘A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles.