The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated...The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.展开更多
Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa...Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.展开更多
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)...This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to s...The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current.展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the...The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.展开更多
The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading...The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze.展开更多
There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteri...There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation.展开更多
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC...The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.展开更多
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have...A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.展开更多
This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific S...This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.展开更多
With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculat...With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high.展开更多
The daily sea surface temperature(SST)data from three kinds of different satellites of GMI,GOES and MODIS were applied to do the blend in the Southeast Pacific Ocean throughout the whole year of 2020.The coverage rate...The daily sea surface temperature(SST)data from three kinds of different satellites of GMI,GOES and MODIS were applied to do the blend in the Southeast Pacific Ocean throughout the whole year of 2020.The coverage rates of the SST of the blend result were improved highly and more stable throughout the whole year,compared with the result of the single satellite of GMI,GOES,and MODIS.The yearly average coverage rates of GMI,GOES,MODIS,and blend were 43%,48%,30%,and 76%,and their corresponding yearly average standard deviation(SD)were 4%,6%,7%,and 4%,respectively.All the coverage rates of these three satellites were low from April to September.The valid observation days calculated in the whole year over every grid were used to represent the spatial distribution patterns of the coverage rates.The spatial distribution patterns of coverage rates from GOES and MODIS were similar that their valid observation days were higher in the northwest area and lower in the south area,and those of GMI was contrary to the former two.The ranges of valid observation day was from GOES,GMI,and MODIS were 0-364,6-254,and 9-231 d,respectively.After the blend,all the observation day of every grid in the research region was enhanced(103-366 d).Especially the near shore and south area,and the minimum valid observation day increased largely from the single digits to hundreds digit.展开更多
Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS mea...Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS measurements.The European Space Agency(ESA)Climate Change Initiative Sea Surface Salinity(CCI-SSS)project merged these three satellite SSS data to produce CCI L4SSS products.We validated the accuracy of the four satellite products(CCI,SMOS,Aquarius,and SMAP)using in-situ gridded data and Argo floats in the South China Sea(SCS).Compared with in-situ gridded data,it shows that the CCI achieved the best performance(RMSD:0.365)on monthly time scales.The RMSD of SMOS,Aquarius,and SMAP(SMOS:0.389;Aquarius:0.409;SMAP:0.391)are close,and the SMOS takes a slight advantage in contrast with Aquarius and SMAP.Large discrepancies can be found near the coastline and in the shelf seas.Meanwhile,CCI with lower RMSD(0.295)perform better than single satellite data(SMOS:0.517;SMAP:0.297)on weekly time scales compared with Argo floats.Overall,the merged CCI have the smallest RMSD among the four satellite products in the SCS on both weekly time scales and monthly time scales,which illustrates the improved accuracy of merged CCI compared with the individual satellite data.展开更多
Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment mon...Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.展开更多
The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual dis...The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual distribution to a spatially uniform distribution and then to a zonal gradual distribution.The South Asian summer monsoon intensity(SASMI)and South Asian summer monsoon direction(SASMD)indicate that the variation of the ASST is highly related to the formation of the SASM during the summer monsoon period and can contribute to the spread of the SASM from the Southwest Arabian Sea throughout all of South Asia.Results of the correlation between the ASST and SASMI for the same month and its adjacent months were the same,and the areas of the positive correlation between the ASST and SASMI significantly increased from May–June as compared to April–May.The maximum correlation coefficient was 0.86.The results of the ASST and SASMD for the same month and its adjacent months were substantially different.However,the ASST and SASMD for May and April also showed a high positive correlation with a maximum correlation coefficient of 0.61 in the southwestern Arabian Sea.Existence of the ASST had a spatially consistent and significant upward trend with a mean increase of 0.6℃during the summer monsoon period from 1980 to 2020(between April and September),whereas the SASMI had a strengthening trend along the western and southwestern regions of the Arabian Sea and the southeastern region of the Arabian Peninsula.Meanwhile,the rest of the study regions showed a declining trend.Overall,the entire study region showed a slight downward trend,and the average value decreased by 0.02ms^(−1).展开更多
Based on Soil Moisture Active Passive sea surface salinity(SSS)data from April 2015 to August 2020,combined with Objectively Analyzed Air-Sea Heat Flux and other observational data and Hybrid Coordinate Ocean Model(HY...Based on Soil Moisture Active Passive sea surface salinity(SSS)data from April 2015 to August 2020,combined with Objectively Analyzed Air-Sea Heat Flux and other observational data and Hybrid Coordinate Ocean Model(HYCOM)data,this work explores the characteristics and mechanisms of the intraseasonal variability of SSS in the southeastern Arabian Sea(SEAS).The results show that the intraseasonal variability of SSS in the SEAS is very significant,especially the strongest intraseasonal signal in SSS,which is located along the northeast monsoon current(NMC)path south of the Indian Peninsula.There are remarkable seasonal differences in intraseasonal SSS variability,which is very weak in spring and summer and much stronger in autumn and winter.This strong intraseasonal variability in autumn and winter is closely related to the Madden-Julian Oscillation(MJO)event during this period.The northeast wind anomaly in the Bay of Bengal(BOB)associated with the active MJO phase strengthens the East India Coastal Current and NMC and consequently induces more BOB low-salinity water to enter the SEAS,causing strong SSS fluctuations.In addition,MJO-related precipitation further amplifies the intraseasonal variability of SSS in SEAS.Based on budget analysis of the mixed layer salinity using HYCOM data,it is shown that horizontal salinity advection(especially zonal advection)dominates the intraseasonal variability of mixed layer salinity and that surface freshwater flux has a secondary role.展开更多
Summer Precipitation in Eastern China was closely related to the global sea surface temperature field. In this paper, the impact of the main sea surface temperature anomaly on flood season precipitation in China’s Hu...Summer Precipitation in Eastern China was closely related to the global sea surface temperature field. In this paper, the impact of the main sea surface temperature anomaly on flood season precipitation in China’s Huanghuai and Jianghuai regions is examined as an external forcing factor for short-term climate prediction. Through analysis of global sea surface temperature anomalies and regional anomalies in Huanghuai and Jianghuai, a significant effect related to the main area, the North Pacific region, and the Nino3 corresponding index calculation is found. Various key areas are examined for their relevance, and finally, the mechanism of summer precipitation in two key zones, China’s Huanghuai and Jianghuai regions, is briefly discussed. The main implication is the prediction of season precipitation based on the external forcing signal of sea surface temperature anomaly in China’s Huanghuai and Jianghuai regions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42076238 and 42376174)the Natural Science Foundation of Shanghai(No.23ZR1426900).
文摘The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.
基金The US Department of State for sponsoring undergraduate exchange program。
文摘Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金supported by the National Natural Science Foundation of China(Grant No.42176015)the National Natural Science Foundation of China(Grant No.41605070)+3 种基金the National Key Research and Development Program(Grant No.2021YFC3101500)the Hunan Provincial Natural Science Outstanding Youth Fund(Grant No.2023JJ10053)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022001)a project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP207)。
文摘This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金supported by the National Natural Science Foundation of China(Nos.42076238,42176012,and 42130402)the National Key Research and Development Program of China(No.2021YFC3101702)the Shanghai Frontiers Research Center of the Hadal Biosphere.
文摘The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current.
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
文摘The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.
基金Guangdong Basic and Applied Basic Research Foundation(2019A1515011808)Science and Technology Planning Program of Guangdong Province(2021B1212020016)。
文摘The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze.
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(41975080)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 42005037)Special Project of Innovative Development, CMA (CXFZ2021J022, CXFZ2022J008, and CXFZ2021J028)+1 种基金Liaoning Provincial Natural Science Foundation Project (Ph.D. Start-up Research Fund 2019-BS214)Research Project of the Institute of Atmospheric Environment, CMA (2021SYIAEKFMS08, 2020SYIAE08 and 2021SYIAEKFMS09)
文摘The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.
文摘A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.
基金the National Natural Science Foundation of China(Grant Nos.42130601,42075060,and 41875046).
文摘This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.
基金The National Natural Science Foundation of China under contract Nos 42274006,42174041,41774001the Research Fund of University of Science and Technology under contract No.2014TDJH101.
文摘With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high.
基金This work was supported by the National Key Research and Development Project of China(No.2019YFD0901405)the Shanghai Sailing Program(No.19YF1460000).
文摘The daily sea surface temperature(SST)data from three kinds of different satellites of GMI,GOES and MODIS were applied to do the blend in the Southeast Pacific Ocean throughout the whole year of 2020.The coverage rates of the SST of the blend result were improved highly and more stable throughout the whole year,compared with the result of the single satellite of GMI,GOES,and MODIS.The yearly average coverage rates of GMI,GOES,MODIS,and blend were 43%,48%,30%,and 76%,and their corresponding yearly average standard deviation(SD)were 4%,6%,7%,and 4%,respectively.All the coverage rates of these three satellites were low from April to September.The valid observation days calculated in the whole year over every grid were used to represent the spatial distribution patterns of the coverage rates.The spatial distribution patterns of coverage rates from GOES and MODIS were similar that their valid observation days were higher in the northwest area and lower in the south area,and those of GMI was contrary to the former two.The ranges of valid observation day was from GOES,GMI,and MODIS were 0-364,6-254,and 9-231 d,respectively.After the blend,all the observation day of every grid in the research region was enhanced(103-366 d).Especially the near shore and south area,and the minimum valid observation day increased largely from the single digits to hundreds digit.
基金Supported by the National Natural Science Foundation of China(No.42075149)。
文摘Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS measurements.The European Space Agency(ESA)Climate Change Initiative Sea Surface Salinity(CCI-SSS)project merged these three satellite SSS data to produce CCI L4SSS products.We validated the accuracy of the four satellite products(CCI,SMOS,Aquarius,and SMAP)using in-situ gridded data and Argo floats in the South China Sea(SCS).Compared with in-situ gridded data,it shows that the CCI achieved the best performance(RMSD:0.365)on monthly time scales.The RMSD of SMOS,Aquarius,and SMAP(SMOS:0.389;Aquarius:0.409;SMAP:0.391)are close,and the SMOS takes a slight advantage in contrast with Aquarius and SMAP.Large discrepancies can be found near the coastline and in the shelf seas.Meanwhile,CCI with lower RMSD(0.295)perform better than single satellite data(SMOS:0.517;SMAP:0.297)on weekly time scales compared with Argo floats.Overall,the merged CCI have the smallest RMSD among the four satellite products in the SCS on both weekly time scales and monthly time scales,which illustrates the improved accuracy of merged CCI compared with the individual satellite data.
基金The National Natural Science Foundation of China under contract No.41976169.
文摘Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.
基金supported by the Global Change and Airsea Interaction Project,the Research and Development of Marine Electromagnetic Field Sensors and Demonstration of Electromagnetic Detection Applications(No.2022YFC 3104000)the Special Project.
文摘The long-term trend of the Arabian Sea surface temperature(ASST)during the formation of the South Asian summer monsoon(SASM)is discussed in this manuscript.From April to June,ASST changed from a meridional gradual distribution to a spatially uniform distribution and then to a zonal gradual distribution.The South Asian summer monsoon intensity(SASMI)and South Asian summer monsoon direction(SASMD)indicate that the variation of the ASST is highly related to the formation of the SASM during the summer monsoon period and can contribute to the spread of the SASM from the Southwest Arabian Sea throughout all of South Asia.Results of the correlation between the ASST and SASMI for the same month and its adjacent months were the same,and the areas of the positive correlation between the ASST and SASMI significantly increased from May–June as compared to April–May.The maximum correlation coefficient was 0.86.The results of the ASST and SASMD for the same month and its adjacent months were substantially different.However,the ASST and SASMD for May and April also showed a high positive correlation with a maximum correlation coefficient of 0.61 in the southwestern Arabian Sea.Existence of the ASST had a spatially consistent and significant upward trend with a mean increase of 0.6℃during the summer monsoon period from 1980 to 2020(between April and September),whereas the SASMI had a strengthening trend along the western and southwestern regions of the Arabian Sea and the southeastern region of the Arabian Peninsula.Meanwhile,the rest of the study regions showed a declining trend.Overall,the entire study region showed a slight downward trend,and the average value decreased by 0.02ms^(−1).
基金The National Natural Science Foundation of China under contract No.42130406the Scientific Research Foundation of Third Institute of Oceanography,Ministry of Natural Resources under contract Nos 2022027 and 2018030+1 种基金the Asian Countries Maritime Cooperation Fund under contract No.99950410the Global Change and Air-Sea InteractionⅡunder contract No.GASI-04-WLHY-01.
文摘Based on Soil Moisture Active Passive sea surface salinity(SSS)data from April 2015 to August 2020,combined with Objectively Analyzed Air-Sea Heat Flux and other observational data and Hybrid Coordinate Ocean Model(HYCOM)data,this work explores the characteristics and mechanisms of the intraseasonal variability of SSS in the southeastern Arabian Sea(SEAS).The results show that the intraseasonal variability of SSS in the SEAS is very significant,especially the strongest intraseasonal signal in SSS,which is located along the northeast monsoon current(NMC)path south of the Indian Peninsula.There are remarkable seasonal differences in intraseasonal SSS variability,which is very weak in spring and summer and much stronger in autumn and winter.This strong intraseasonal variability in autumn and winter is closely related to the Madden-Julian Oscillation(MJO)event during this period.The northeast wind anomaly in the Bay of Bengal(BOB)associated with the active MJO phase strengthens the East India Coastal Current and NMC and consequently induces more BOB low-salinity water to enter the SEAS,causing strong SSS fluctuations.In addition,MJO-related precipitation further amplifies the intraseasonal variability of SSS in SEAS.Based on budget analysis of the mixed layer salinity using HYCOM data,it is shown that horizontal salinity advection(especially zonal advection)dominates the intraseasonal variability of mixed layer salinity and that surface freshwater flux has a secondary role.
文摘Summer Precipitation in Eastern China was closely related to the global sea surface temperature field. In this paper, the impact of the main sea surface temperature anomaly on flood season precipitation in China’s Huanghuai and Jianghuai regions is examined as an external forcing factor for short-term climate prediction. Through analysis of global sea surface temperature anomalies and regional anomalies in Huanghuai and Jianghuai, a significant effect related to the main area, the North Pacific region, and the Nino3 corresponding index calculation is found. Various key areas are examined for their relevance, and finally, the mechanism of summer precipitation in two key zones, China’s Huanghuai and Jianghuai regions, is briefly discussed. The main implication is the prediction of season precipitation based on the external forcing signal of sea surface temperature anomaly in China’s Huanghuai and Jianghuai regions.