The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have...A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.展开更多
The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Mode...The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Model (POCM) prediction. The results show that the distributions of the SSH anomalies of the SCS in January, March and May, are opposite to those in July, September and November respectively; In January (July) there is the SSH negative (positive) anomaly in the deep water basin and at the Luzon Strait, while there is positive (negative) anomaly on the most of continental shelves in the west and south of South China Sea; In March (September) the SSH anomalies are similar to those in January (July), although their magnitudes have decreased and a small positive (negative) anomaly appears in the center of the South China Sea; The amplitude of the SSH annual cycle reaches its maximum in the Northwest of the Luzon Island; The seasonal variability of the wind stress is dominant in the formation of the SSH seasonal variability.展开更多
The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array ...The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.展开更多
Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable ...Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .展开更多
The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tida...The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tidal results from T/P data, is predominated by seasonal alternating monsoons. The results reveal that the SSHA in the central part of the SCS is positive in spring and summer, but negative in autumn and winter. It is also found that the SSHA in the SCS can be approached with the sum of tidal constituents SA and SSA. The geostrophic circulations in the SCS are calculated according to sea surface dynamic topography, which is the sum of SSHA and mean sea surface height. It is suggested that the circulation in the upper layer of the SCS is generally cyclonic and notably western intensified during autumn and winter, while the western intensification is weak during spring and summer. It is also indicated that the Kuroshio intrudes into the northeastern SCS throuth the Luzon Strait in winter. But there is no indication of Kuroshio intruding into the SCS in summer.展开更多
A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal featu...A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs,in which the spatial features are“learned”by convolutional operations while the temporal features are tracked by long short term memory(LSTM).Trained by a reanalysis dataset of the South China Sea(SCS),ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer.Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4%averaged over a 15-d prediction period.In particular,ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model.Given the much less computation in the prediction required by ConvLSTMP3,our study suggests that the deep learning technique is very useful and effective in the SSH prediction,and could be an alternative way in the operational prediction for ocean environments in the future.展开更多
The relationship between heat content and the interannual time scale is examined with satellite sea surface height (SSH) in the global ocean on altimeter measurements, historical hydrography, and model assimilation ...The relationship between heat content and the interannual time scale is examined with satellite sea surface height (SSH) in the global ocean on altimeter measurements, historical hydrography, and model assimilation outputs. Results show that correlation between altimetric SSH and heat content in the upper 700 m calculated from Ishii data is geographically nonuniform. In the tropical ocean, heat content and SSH are strongly correlated and exhibit nearly the same interannual variations. In the polar ocean, their correlation is relatively weak. Further analysis with Simple Ocean Data Assimilation outputs shows that such nonuniform distribution is not from dynamical origin but from the limited integral depth selected to calculate heat content. The integral depth of 700 m is inadequate to capture variation of the deep main thermocline in the polar region. The halosteric effect also contributes to the nonuniform pattern of correlation, because saline contraction becomes significant in the polar ocean owing to low temperature.展开更多
Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH...Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.展开更多
The climate modulation on the sea surface height (SSH) in China seas is investigated using a China Ocean Reanalysis (CORA) dataset from 1958-2008. The dataset is constructed by assimilating the temperature/salinit...The climate modulation on the sea surface height (SSH) in China seas is investigated using a China Ocean Reanalysis (CORA) dataset from 1958-2008. The dataset is constructed by assimilating the temperature/salinity profiles derived from the satellite altimetry data and historical observational temperature/salinity profiles. Based on the Empirical Orthogonal Function (EOF), the CORA sea surface height anomaly (SSHa) is decomposed, and the interannual and decadal variability of the first three leading modes are analyzed. On the interannual timescale, the first principal component (PC1) is significant positively correlated with the E1 Nifio/Southern Oscillation (ENSO). On the decadal timescale, North Pacific Gyre Oscillation (NPGO) has significant negative correlation with PC 1 whereas Pacific Decadal Oscillation (PDO) is in phase with PC3. Analysis shows that the decadal variability of SSH is mainly modulated by the wind stress curl variability related to the NPGO and PDO. In addition, the effect of net heat flux associated to the NPGO and PDO on SSH is also investigated, with net heat flux variability in the Luzon strait and tropic Pacific found to influence the decadal variability of SSH.展开更多
t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the ve...t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.展开更多
Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven R...Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven Rossby wave model derived in a 1.5-layer ocean is extended to include surface buoyancy forcing,and the new model is then used to assess the contribution from buoyancy-forced Rossby waves to low-frequency North Atlantic steric SSH variations.Buoyancy forcing is determined from surface heating as freshwater fluxes are negligible.It is found that buoyancy-forced Rossby waves are important in only a few regions belonging to the subtropicaltomidlatitude and eastern subpolar North Atlantic.In these regions,the new Rossby wave model accounts for 25%-70% of low-frequency steric SSH variations.Furthermore,as part of the analysis it is also shown that a simple static model driven by local surface heat fluxes captures 60%-75% of low-frequency steric SSH variations in the Labrador Sea,which is a region where Rossby waves are found to have no influence on the steric SSH.展开更多
The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pa...The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pacific basin scale oscillations are examined. The first CSEOF mode of the SCS-SSH is a strongly phase-locked annual cycle that is modulated by a slowly varying principal component(PC); the strength of this annual cycle becomes reduced during El Ni?o events(at largest by 30% off in 1997/98) and enhanced during La Ni?a events. The second mode is a low frequency oscillation nearly on decadal time scale, with its spatial structure exhibiting an obscure month-dependence; the corresponding PC is highly correlated with the Pacific Decadal Oscillation(PDO) index.Five independent oscillations in the Pacific are isolated by using the independent component(IC) analysis(ICA)method, and their effects on the SCS-SSH are examined. It is revealed that the pure ENSO mode(which resembles the east Pacific ENSO) has little effect on the low frequency variability of the SCS-SSH while the ENSO reddening mode(which resembles the central Pacific ENSO) has clear effect. As the ENSO reddening mode is an important constituent of the PDO, this explains why the PDO is more important than ENSO in modulating the low frequency variability of SCS-SSH. Meridional saddle like oscillation mode, the Kuroshio extension warming mode, and the equatorial cooling mode are also successfully detected by the ICA, but they have little effect on the low frequency variability of the SCS-SSH. Further analyses suggest the Pacific oscillations are probably influencing the variability of the SCS-SSH in ways that are different from that of the sea surface temperature(SST) in the SCS.展开更多
Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is ...Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is unable to get both high temporal and spatial resolution. The InSAR altimetry system using InSAR altimeter instead of nadir radar altimeter is an improvement which can get both high cross-track and along-track resolution and wide swath. However, the conventional SAR interferometry only can achieve meter level height accuracy. This paper focuses on a method of radar echo-tracking for InSAR altimeter system in order to correct the slant range measurements and finally to improve the height measurement accuracy to several centimeters' level. Radar slant range (from observed pixels to radar antenna) estimation error affects the height measurement accuracy badly, nevertheless not considered in the conventional SAR interferometry. The proposed method is ameliorated based on the traditional echo-model used in nadir radar altimeter system, focusing on the echo signals from observed pixels with different incident angles. Simulations of sea surface height measurements are performed in the last part of this paper, and the conclusions are drawn that, with corrected slant range, the accuracy of InSAR altimetry can be much better than the conventional SAR interferometry.展开更多
The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. Th...The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of-600 km and a southwestward phase speed of-0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.展开更多
A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 199...A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 1994 to April 2014) were used for comparative analysis. The findings indicate that the rate of slowdown of SSH rises in the GIN seas (3.0 mm/a) far exceeded that of the global mean (0.6 mm/a). In particular, the mean steric height of the GIN seas increased at a rate of 4.5 mm/a and then decreased at a slower pace. This was the main factor responsible for the stagnation of the SSH rises, while the mass factor only increased slightly. The Norwegian Sea particularly experienced the most prominent slowdown in SSH rises, mainly due to decreased warming of the 0-600 m layer. The controlling factors of this decreased warming were cessation in the increase of volume of the Atlantic inflow and stagnation of warming of the inflow. However, variations in air-sea thermal flux were not a major factor. In the recent two decades, mean halosteric components of the GIN seas decreased steadily and remained at a rate of 2 mm/a or more because of increased flow and salinity of the Atlantic inflow during the first decade, and reduction in freshwater inputs from the Arctic Ocean in the second decade.展开更多
The sea surface height anomaly(SSHA) signals leading the fall Indian Ocean Dipole(IOD) are investigated. The results suggest that, prior to the IOD by one year, a positive SSHA emerges over the western-central tropica...The sea surface height anomaly(SSHA) signals leading the fall Indian Ocean Dipole(IOD) are investigated. The results suggest that, prior to the IOD by one year, a positive SSHA emerges over the western-central tropical Pacific(WCTP), which peaks during winter(January-February-March, JFM), persists into late spring and early summer(April-May-June, AMJ), and becomes weakened later on. An SSHA index, referred as to SSHA_WCTP, is defined as the averaged SSHA over the WCTP during JFM. The index is not only significantly positively correlated with the following-fall(September-October-November, SON) IOD index, but also is higher than the autocorrelation of the IOD index crossing the two different seasons. The connection of SSHA_ WCTP with following-summer rainfall in China is then explored. The results suggest that higher(lower) SSHA_ WCTP corresponds to increased(reduced) rainfall over southern coastal China, along with suppressed(increased) rainfall over the middle–lower reaches of the Yangtze River, North China, and the Xinjiang region of northwestern China. Mechanistically, following the preceding-winter higher(lower) SSHA_WCTP, the South Asia High and the Western Pacific Subtropical High are weakened(intensified), which results in the East Asian summer monsoon weakening(intensifying). Finally, the connection between SSHA_WCTP and El Ni?o-Southern Oscillation(ENSO) is analyzed. Despite a significant correlation, SSHA_WCTP is more closely connected with summer rainfall. This implies that the SSHA_WCTP index in the preceding winter is a more effective predictor of summer rainfall in comparison with ENSO.展开更多
An analysis of the delay Doppler maps(DDMs) data from the CYGNSS satellites is implemented to derive the sea surface height(SSH). An SSH estimation algorithm, the leading edge derivation(LED) method which is applied t...An analysis of the delay Doppler maps(DDMs) data from the CYGNSS satellites is implemented to derive the sea surface height(SSH). An SSH estimation algorithm, the leading edge derivation(LED) method which is applied to the delay waveforms, is applied to the DDMs, while the tropospheric delay methods, the Saastamoinen method(SM)and the numerical method(NM) are used. The results show that when the SSH from Jason-2 is referred to as the truth, if the tropospheric delay is corrected, the SSH bias can decrease. The resulted SSH bias from the Jason-2 SSH by the LED retrieval method is of order meter. The resulted SSH deviation from the truth by the NM scheme is half as small as that by the SM scheme. Since the SM scheme is not applicable to the nonhydrostatical condition, the resulted bias is larger.The work can be applied to the Beidou system in the future.展开更多
The Sea Surface Height Anomaly (SSHA) from the TOPEX/Poseidon altimeter data in 1994 is assimilated into a high-resolution model of the South China Sea (SCS) with nudging method. The model results can reveal the seaso...The Sea Surface Height Anomaly (SSHA) from the TOPEX/Poseidon altimeter data in 1994 is assimilated into a high-resolution model of the South China Sea (SCS) with nudging method. The model results can reveal the seasonal variations of SSHA and its time-space migration characters,at the same time,verify the effect of assimilation.Compared with non-assimilation results,assimilation results can show the seasonal variations of SSHA better,particularly in winter.Futhermore,it can distinguish temporal-spatial migration characters of SSHA clearly,i.e. cold signal of SSHA in northern SCS propagating westward and warm signal of SSHA in central SCS propagating eastward.It shows that as an easy and effective method,data assimilation of the SSHA with nudging method could make the simulated results closer to the available observations.展开更多
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
文摘A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.
基金the NSFC (No. 49636230) National Key Program for Developing Basic Science (G 1999043807) of Ministry of Science Technology
文摘The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Model (POCM) prediction. The results show that the distributions of the SSH anomalies of the SCS in January, March and May, are opposite to those in July, September and November respectively; In January (July) there is the SSH negative (positive) anomaly in the deep water basin and at the Luzon Strait, while there is positive (negative) anomaly on the most of continental shelves in the west and south of South China Sea; In March (September) the SSH anomalies are similar to those in January (July), although their magnitudes have decreased and a small positive (negative) anomaly appears in the center of the South China Sea; The amplitude of the SSH annual cycle reaches its maximum in the Northwest of the Luzon Island; The seasonal variability of the wind stress is dominant in the formation of the SSH seasonal variability.
文摘The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.
基金Supported by the National Natural Science Foundation of China (No.40890151)the National Basic Research Program of China (973 Program)(No.2012CB417401)
文摘Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .
基金This study was supported by the National Natural Science Foundation of China under contract No.40006001 the Young Oceanologist Foundation of the State Oceanic Administration under contract No.99306.
文摘The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tidal results from T/P data, is predominated by seasonal alternating monsoons. The results reveal that the SSHA in the central part of the SCS is positive in spring and summer, but negative in autumn and winter. It is also found that the SSHA in the SCS can be approached with the sum of tidal constituents SA and SSA. The geostrophic circulations in the SCS are calculated according to sea surface dynamic topography, which is the sum of SSHA and mean sea surface height. It is suggested that the circulation in the upper layer of the SCS is generally cyclonic and notably western intensified during autumn and winter, while the western intensification is weak during spring and summer. It is also indicated that the Kuroshio intrudes into the northeastern SCS throuth the Luzon Strait in winter. But there is no indication of Kuroshio intruding into the SCS in summer.
基金The National Key Research and Development Program under contract Nos 2018YFC1406204 and 2018YFC1406201the Guangdong Special Support Program under contract No.2019BT2H594+5 种基金the Taishan Scholar Foundation under contract No.tsqn201812029the National Natural Science Foundation of China under contract Nos U1811464,61572522,61572523,61672033,61672248,61873280,41676016 and 41776028the Natural Science Foundation of Shandong Province under contract Nos ZR2019MF012 and 2019GGX101067the Fundamental Research Funds of Central Universities under contract Nos 18CX02152A and 19CX05003A-6the fund of the Shandong Province Innovation Researching Group under contract No.2019KJN014the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0303.
文摘A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs,in which the spatial features are“learned”by convolutional operations while the temporal features are tracked by long short term memory(LSTM).Trained by a reanalysis dataset of the South China Sea(SCS),ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer.Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4%averaged over a 15-d prediction period.In particular,ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model.Given the much less computation in the prediction required by ConvLSTMP3,our study suggests that the deep learning technique is very useful and effective in the SSH prediction,and could be an alternative way in the operational prediction for ocean environments in the future.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)the National Natural Science Foundation of China (Nos. 41006114, 40890151)+1 种基金the National Basic Research Program of China (973 Program) (No. 2012CB417401)the SOA Key Laboratory for Polar Science (No. KP201103)
文摘The relationship between heat content and the interannual time scale is examined with satellite sea surface height (SSH) in the global ocean on altimeter measurements, historical hydrography, and model assimilation outputs. Results show that correlation between altimetric SSH and heat content in the upper 700 m calculated from Ishii data is geographically nonuniform. In the tropical ocean, heat content and SSH are strongly correlated and exhibit nearly the same interannual variations. In the polar ocean, their correlation is relatively weak. Further analysis with Simple Ocean Data Assimilation outputs shows that such nonuniform distribution is not from dynamical origin but from the limited integral depth selected to calculate heat content. The integral depth of 700 m is inadequate to capture variation of the deep main thermocline in the polar region. The halosteric effect also contributes to the nonuniform pattern of correlation, because saline contraction becomes significant in the polar ocean owing to low temperature.
文摘Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.
基金Supported by the National Basic Research Program of China(973 Program)(No.2013CB430304)the National Natural Science Foundation of China(Nos.41176003,41206178,41376013,41376015,41306006)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the Global Change and Air-Sea Interaction of China(No.GASI-01-01-12)
文摘The climate modulation on the sea surface height (SSH) in China seas is investigated using a China Ocean Reanalysis (CORA) dataset from 1958-2008. The dataset is constructed by assimilating the temperature/salinity profiles derived from the satellite altimetry data and historical observational temperature/salinity profiles. Based on the Empirical Orthogonal Function (EOF), the CORA sea surface height anomaly (SSHa) is decomposed, and the interannual and decadal variability of the first three leading modes are analyzed. On the interannual timescale, the first principal component (PC1) is significant positively correlated with the E1 Nifio/Southern Oscillation (ENSO). On the decadal timescale, North Pacific Gyre Oscillation (NPGO) has significant negative correlation with PC 1 whereas Pacific Decadal Oscillation (PDO) is in phase with PC3. Analysis shows that the decadal variability of SSH is mainly modulated by the wind stress curl variability related to the NPGO and PDO. In addition, the effect of net heat flux associated to the NPGO and PDO on SSH is also investigated, with net heat flux variability in the Luzon strait and tropic Pacific found to influence the decadal variability of SSH.
基金Supported by the National Natural Science Foundation of China (No. 40637034), the National High Technology Research and Development Program of China(No. 2006AA12Z309, 2006AAO9Z138, 2007AA12Z346).
文摘t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.
文摘Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven Rossby wave model derived in a 1.5-layer ocean is extended to include surface buoyancy forcing,and the new model is then used to assess the contribution from buoyancy-forced Rossby waves to low-frequency North Atlantic steric SSH variations.Buoyancy forcing is determined from surface heating as freshwater fluxes are negligible.It is found that buoyancy-forced Rossby waves are important in only a few regions belonging to the subtropicaltomidlatitude and eastern subpolar North Atlantic.In these regions,the new Rossby wave model accounts for 25%-70% of low-frequency steric SSH variations.Furthermore,as part of the analysis it is also shown that a simple static model driven by local surface heat fluxes captures 60%-75% of low-frequency steric SSH variations in the Labrador Sea,which is a region where Rossby waves are found to have no influence on the steric SSH.
基金The National Natural Science Foundation of China under contract Nos 91128204,41321004,41475101 and 41421005the National Basic Research Program(973 Program)of China under contract No.2013CB430302+1 种基金the Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406401the Strategic Priority Project of Chinese Academy of Sciences under contract Nos XDA11010301 and XDA11010104
文摘The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pacific basin scale oscillations are examined. The first CSEOF mode of the SCS-SSH is a strongly phase-locked annual cycle that is modulated by a slowly varying principal component(PC); the strength of this annual cycle becomes reduced during El Ni?o events(at largest by 30% off in 1997/98) and enhanced during La Ni?a events. The second mode is a low frequency oscillation nearly on decadal time scale, with its spatial structure exhibiting an obscure month-dependence; the corresponding PC is highly correlated with the Pacific Decadal Oscillation(PDO) index.Five independent oscillations in the Pacific are isolated by using the independent component(IC) analysis(ICA)method, and their effects on the SCS-SSH are examined. It is revealed that the pure ENSO mode(which resembles the east Pacific ENSO) has little effect on the low frequency variability of the SCS-SSH while the ENSO reddening mode(which resembles the central Pacific ENSO) has clear effect. As the ENSO reddening mode is an important constituent of the PDO, this explains why the PDO is more important than ENSO in modulating the low frequency variability of SCS-SSH. Meridional saddle like oscillation mode, the Kuroshio extension warming mode, and the equatorial cooling mode are also successfully detected by the ICA, but they have little effect on the low frequency variability of the SCS-SSH. Further analyses suggest the Pacific oscillations are probably influencing the variability of the SCS-SSH in ways that are different from that of the sea surface temperature(SST) in the SCS.
基金funded by the National Nature Science Foundations of China(41404019,41674026)the open fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(CSUWX-A-KJ-2016-044)
文摘Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is unable to get both high temporal and spatial resolution. The InSAR altimetry system using InSAR altimeter instead of nadir radar altimeter is an improvement which can get both high cross-track and along-track resolution and wide swath. However, the conventional SAR interferometry only can achieve meter level height accuracy. This paper focuses on a method of radar echo-tracking for InSAR altimeter system in order to correct the slant range measurements and finally to improve the height measurement accuracy to several centimeters' level. Radar slant range (from observed pixels to radar antenna) estimation error affects the height measurement accuracy badly, nevertheless not considered in the conventional SAR interferometry. The proposed method is ameliorated based on the traditional echo-model used in nadir radar altimeter system, focusing on the echo signals from observed pixels with different incident angles. Simulations of sea surface height measurements are performed in the last part of this paper, and the conclusions are drawn that, with corrected slant range, the accuracy of InSAR altimetry can be much better than the conventional SAR interferometry.
基金Supported by the Ministry of Science and Technology of China(National Basic Research Program of China(No.2012CB955602))the National Key Program for Developing Basic Science(No.2010CB428904)+1 种基金the National Natural Science Foundation of China(No.40830106)a China Postdoctoral Science Foundation Funded Project(No.20100471573)
文摘The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of-600 km and a southwestward phase speed of-0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.
基金The National Natural Science Foundation of China under contract No.41330960the National Major Scientific Research Program on Global Changes under contract No.2015CB953900
文摘A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 1994 to April 2014) were used for comparative analysis. The findings indicate that the rate of slowdown of SSH rises in the GIN seas (3.0 mm/a) far exceeded that of the global mean (0.6 mm/a). In particular, the mean steric height of the GIN seas increased at a rate of 4.5 mm/a and then decreased at a slower pace. This was the main factor responsible for the stagnation of the SSH rises, while the mass factor only increased slightly. The Norwegian Sea particularly experienced the most prominent slowdown in SSH rises, mainly due to decreased warming of the 0-600 m layer. The controlling factors of this decreased warming were cessation in the increase of volume of the Atlantic inflow and stagnation of warming of the inflow. However, variations in air-sea thermal flux were not a major factor. In the recent two decades, mean halosteric components of the GIN seas decreased steadily and remained at a rate of 2 mm/a or more because of increased flow and salinity of the Atlantic inflow during the first decade, and reduction in freshwater inputs from the Arctic Ocean in the second decade.
基金jointly supported by the Strategic Project of the Chinese Academy of Sciences(Grant No.XDA11010401)the National Basic Research Program of China(973 Program,Grant Nos.2012CB417403 and 2015CB453202)
文摘The sea surface height anomaly(SSHA) signals leading the fall Indian Ocean Dipole(IOD) are investigated. The results suggest that, prior to the IOD by one year, a positive SSHA emerges over the western-central tropical Pacific(WCTP), which peaks during winter(January-February-March, JFM), persists into late spring and early summer(April-May-June, AMJ), and becomes weakened later on. An SSHA index, referred as to SSHA_WCTP, is defined as the averaged SSHA over the WCTP during JFM. The index is not only significantly positively correlated with the following-fall(September-October-November, SON) IOD index, but also is higher than the autocorrelation of the IOD index crossing the two different seasons. The connection of SSHA_ WCTP with following-summer rainfall in China is then explored. The results suggest that higher(lower) SSHA_ WCTP corresponds to increased(reduced) rainfall over southern coastal China, along with suppressed(increased) rainfall over the middle–lower reaches of the Yangtze River, North China, and the Xinjiang region of northwestern China. Mechanistically, following the preceding-winter higher(lower) SSHA_WCTP, the South Asia High and the Western Pacific Subtropical High are weakened(intensified), which results in the East Asian summer monsoon weakening(intensifying). Finally, the connection between SSHA_WCTP and El Ni?o-Southern Oscillation(ENSO) is analyzed. Despite a significant correlation, SSHA_WCTP is more closely connected with summer rainfall. This implies that the SSHA_WCTP index in the preceding winter is a more effective predictor of summer rainfall in comparison with ENSO.
基金National Natural Science Foundation of China(41875060, U1606405)。
文摘An analysis of the delay Doppler maps(DDMs) data from the CYGNSS satellites is implemented to derive the sea surface height(SSH). An SSH estimation algorithm, the leading edge derivation(LED) method which is applied to the delay waveforms, is applied to the DDMs, while the tropospheric delay methods, the Saastamoinen method(SM)and the numerical method(NM) are used. The results show that when the SSH from Jason-2 is referred to as the truth, if the tropospheric delay is corrected, the SSH bias can decrease. The resulted SSH bias from the Jason-2 SSH by the LED retrieval method is of order meter. The resulted SSH deviation from the truth by the NM scheme is half as small as that by the SM scheme. Since the SM scheme is not applicable to the nonhydrostatical condition, the resulted bias is larger.The work can be applied to the Beidou system in the future.
基金the South China Sea Monsoon Experiment,the State Key Basic Research Program (G1999043806)the CAS Knowledge Innovation Project (KZCX2-202)the National Natural Science Foundation of China (400076007)
文摘The Sea Surface Height Anomaly (SSHA) from the TOPEX/Poseidon altimeter data in 1994 is assimilated into a high-resolution model of the South China Sea (SCS) with nudging method. The model results can reveal the seasonal variations of SSHA and its time-space migration characters,at the same time,verify the effect of assimilation.Compared with non-assimilation results,assimilation results can show the seasonal variations of SSHA better,particularly in winter.Futhermore,it can distinguish temporal-spatial migration characters of SSHA clearly,i.e. cold signal of SSHA in northern SCS propagating westward and warm signal of SSHA in central SCS propagating eastward.It shows that as an easy and effective method,data assimilation of the SSHA with nudging method could make the simulated results closer to the available observations.