To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructure...To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructures of the optimized Al-Cu-Mg alloy were observed by means of scanning electron microscopy and transmission electron microscopy,and the properties were investigated by hardness measurements,tensile tests,exfoliation corrosion tests,and intergranular corrosion tests.Results show that the S phase andθ’phase simultaneously exist in the T6I6 treated alloy.Appropriately increasing the temperature of the interrupted aging in the T6I6 process can improve the mechanical properties and corrosion resistance of Al-Cu-Mg alloy.The optimal comprehensive properties(tensile strength of 443.6 MPa,hardness of 161.6 HV)of the alloy are obtained by initial aging at 180℃for 2 h,interrupted aging at 90℃for 30 min,and re-aging at 170℃for 4 h.展开更多
The crack propagation rates of T6 peak aging and T7951 secondary aging 7055 aluminium alloys were tested under stress ratios (R) of 0.6, 0.05 and ?1, respectively. The microstructures and fracture surfaces were analyz...The crack propagation rates of T6 peak aging and T7951 secondary aging 7055 aluminium alloys were tested under stress ratios (R) of 0.6, 0.05 and ?1, respectively. The microstructures and fracture surfaces were analyzed by TEM and SEM. The results reveal that the crack propagation rate is affected by the stress ratio and microstructure such as the distribution, dimension and volume fraction of matrix precipitates, grain boundary precipitates and precipitate free zone. For both heat-treated specimens, crack propagation rate increases with the improvement of R when it is a positive value while crack propagation rate at R=?1 is much similar to that at R=0.06. The crack growth rates exhibit no obvious difference in lower stress intensity factor range (ΔK), while the difference starts to be obvious when ΔK exceeds certain value. The fracture analysis testifies a better fracture toughness for 7055-T7951 with a smaller striation space in Paris region.展开更多
The rutting and low-temperature resistances of warm-mix recycled asphalt binders under the secondary aging condition were measured by the dynamic shear rheometer test and bending beam rheometer test.Effects of differe...The rutting and low-temperature resistances of warm-mix recycled asphalt binders under the secondary aging condition were measured by the dynamic shear rheometer test and bending beam rheometer test.Effects of different types of warm-mix asphalt(WMA)technologies and additives were evaluated.Aging and improvement mechanisms were investigated by the Fourier transform infrared spectroscopy test.It is found that recycled binders after the secondary aging are more resistant to rutting and less resistant to low-temperature cracking.The two warm-mix asphalt technologies have opposite effects.Using the Sasobit WMA significantly improves the rutting resistance and reduces the low temperature resistance for the recycled binders due to its morphological change at different temperatures.The rutting factor values of recycled asphalt binders with the Sasobit additive increase by 4.6 to 5.6 times.However,using the Evotherm WMA causes the deterioration of the rutting resistance due to the structural lubrication effect.The rutting factor values of recycled asphalt binders with the Evotherm additive show the reduction of 52%to 62%.It is recommended to add the styrene butadiene rubber latex or crumb rubber powder into the warm-mix recycled asphalt binders to simultaneously improve the rutting and low-temperature cracking resistances.展开更多
基金financially supported by the Program for National Key Research and Development Plan(No.2017YFB1104000)the National Natural Science Foundation of China(No.51574167)+1 种基金the Liaoning Natural Science Foundation(No.2021-MS-235)the Science and Technology Program of Liaoning Provincial Department of Education(No.LJGD2020010)。
文摘To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructures of the optimized Al-Cu-Mg alloy were observed by means of scanning electron microscopy and transmission electron microscopy,and the properties were investigated by hardness measurements,tensile tests,exfoliation corrosion tests,and intergranular corrosion tests.Results show that the S phase andθ’phase simultaneously exist in the T6I6 treated alloy.Appropriately increasing the temperature of the interrupted aging in the T6I6 process can improve the mechanical properties and corrosion resistance of Al-Cu-Mg alloy.The optimal comprehensive properties(tensile strength of 443.6 MPa,hardness of 161.6 HV)of the alloy are obtained by initial aging at 180℃for 2 h,interrupted aging at 90℃for 30 min,and re-aging at 170℃for 4 h.
基金Project(51405309)supported by the National Natural Science Foundation of ChinaProject(2013024012)supported by the Natural Science Foundation of Liaoning Province,China
文摘The crack propagation rates of T6 peak aging and T7951 secondary aging 7055 aluminium alloys were tested under stress ratios (R) of 0.6, 0.05 and ?1, respectively. The microstructures and fracture surfaces were analyzed by TEM and SEM. The results reveal that the crack propagation rate is affected by the stress ratio and microstructure such as the distribution, dimension and volume fraction of matrix precipitates, grain boundary precipitates and precipitate free zone. For both heat-treated specimens, crack propagation rate increases with the improvement of R when it is a positive value while crack propagation rate at R=?1 is much similar to that at R=0.06. The crack growth rates exhibit no obvious difference in lower stress intensity factor range (ΔK), while the difference starts to be obvious when ΔK exceeds certain value. The fracture analysis testifies a better fracture toughness for 7055-T7951 with a smaller striation space in Paris region.
基金The Natural Science Foundation of Jiangsu Province(No.BK20181404)Qing Lan Project(2016)the Training Plan Project for Young Core Teachers of Nanjing Forestry University(2017).
文摘The rutting and low-temperature resistances of warm-mix recycled asphalt binders under the secondary aging condition were measured by the dynamic shear rheometer test and bending beam rheometer test.Effects of different types of warm-mix asphalt(WMA)technologies and additives were evaluated.Aging and improvement mechanisms were investigated by the Fourier transform infrared spectroscopy test.It is found that recycled binders after the secondary aging are more resistant to rutting and less resistant to low-temperature cracking.The two warm-mix asphalt technologies have opposite effects.Using the Sasobit WMA significantly improves the rutting resistance and reduces the low temperature resistance for the recycled binders due to its morphological change at different temperatures.The rutting factor values of recycled asphalt binders with the Sasobit additive increase by 4.6 to 5.6 times.However,using the Evotherm WMA causes the deterioration of the rutting resistance due to the structural lubrication effect.The rutting factor values of recycled asphalt binders with the Evotherm additive show the reduction of 52%to 62%.It is recommended to add the styrene butadiene rubber latex or crumb rubber powder into the warm-mix recycled asphalt binders to simultaneously improve the rutting and low-temperature cracking resistances.