期刊文献+
共找到1,009篇文章
< 1 2 51 >
每页显示 20 50 100
Amplification of in-plane seismic ground motion by group cavities in layered half-space (Ⅱ): with saturated poroelastic soil layers 被引量:3
1
作者 Jianwen Liang Ji Zhang Zhenning Ba 《Earthquake Science》 CSCD 2012年第4期287-298,共12页
As the continuation study on amplification of in-plane seismic ground motion by underground group cavities in layered half-space, this study extends to the case of poroelastic half-space with dry poroelastic and satur... As the continuation study on amplification of in-plane seismic ground motion by underground group cavities in layered half-space, this study extends to the case of poroelastic half-space with dry poroelastic and saturated poroelastic soil layers. The influence of poroelastic layers on the amplification of seismic ground motion is studied both in frequency domain and time domain using indirect boundary element method (IBEM). It is shown that for the example of a saturated poroelastic site in Tianjin under the excitation of Taft wave and E1 Centro wave, the amplification of seismic ground motion in poroelastic case is slightly smaller than that in the elastic case, and the amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum).. can be increased up to 38.8% and 64.6%; the predominant period of response spectra in poroelastic case becomes shorter to some extent compared with that in the elastic case. It is suggested that the effect of underground group cavities in poroelastic half-space on design seismic ground motion should be considered. 展开更多
关键词 underground group cavity dry poroelastic saturated poroelastlc AMPLIFICATION IN-PLANE seismic ground motion indirect boundary element method (IBEM)
下载PDF
Amplification of in-plane seismic ground motion by group cavities in layered half-space (Ⅰ) 被引量:2
2
作者 Jianwen Liang Ji Zhang Zhenning Ba 《Earthquake Science》 CSCD 2012年第4期275-285,共11页
Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effec... Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effect of cavity interval and spectrum of incident waves on the amplification are studied by numerical examples. It is shown that there may be large interaction between cavities, and group cavities with certain intervals may have significant amplification to seismic ground motion. The amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum) can be increased up to 45.2% and 84.4%, for an example site in Tianjin, under the excitation of Taft wave and E1 Centro wave; and group cavities may also affect the spectra of the seismic ground motion. It is suggested that the effect of underground group cavities on design seismic ground motion should be considered. 展开更多
关键词 underground group cavity AMPLIFICATION IN-PLANE seismic ground motion time domain frequency domain indirect boundary element method (IBEM)
下载PDF
Simplified method for simulation of ergodic spatially correlated seismic ground motion
3
作者 高玉峰 吴勇信 黎冰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第10期1297-1314,共18页
A simplified method for the simulation of the ergodic spatially correlated seismic ground motion is proposed based on the commonly used original spectral representation method. To represent the correlation in the grou... A simplified method for the simulation of the ergodic spatially correlated seismic ground motion is proposed based on the commonly used original spectral representation method. To represent the correlation in the ground motion, the phase angles are given by explicit terms with a clear physical meaning. By these explicit terms, the computational efficiency can be improved by converting the decomposition of the complex cross-spectral matrix into the decomposition of the real incoherence coefficient matrix. Double-indexing frequencies are introduced to simulate the ergodic seismic ground motion, and the ergodic feature of the improved method is demonstrated theoretically. Subsequently, an explicit solution of the elements of the lower triangular matrix under the Cholesky decomposition is given. With this explicit solution, the improved method is simplified, and the computational efficiency can be improved greatly by avoiding the repetitive Cholesky decomposition of the cross-spectral matrix in each frequency step. Finally, a numerical example shows the good characteristic of the improved method. 展开更多
关键词 seismic ground motion original spectral representation ERGODIC doubleindexing frequency incoherency coefficient matrix analytical solution
下载PDF
Estimation of Seismic Ground Motion Induced by the 23 January, 2005 Earthquake in Palu Region, Central Sulawesi, Indonesia
4
作者 Pyi Soe Thein Subagyo Pramumijoyo +4 位作者 Kirbani Sri Brotopuspito Junji Kiyono Wahyu Wilopo Aiko Furukawa Agung Setianto 《Journal of Geological Resource and Engineering》 2014年第4期200-207,共8页
On January 23rd 2005, a strong earthquake with moment magnitude (Mw 6.3) hit the Palu City (Central Sulawesi area). The earthquake involved an area more than 800 km along the Palu Koro fault zone. In order to char... On January 23rd 2005, a strong earthquake with moment magnitude (Mw 6.3) hit the Palu City (Central Sulawesi area). The earthquake involved an area more than 800 km along the Palu Koro fault zone. In order to characterize the seismic ground motion of alluvium layers existing in the Palu City, eight sites of mierotremor array measurements were performed. The shear wave velocity of the top layer is ≤ 300 m/s. Palu City had deposited on a thick alluvial layer in the coastal area. The subsurface geology also changes slowly from soft sedimentary layers in the coastal area to igneous intrusion and metamorphic rock in the mountains. Seismic strong ground motion was predicted based on the statistical Green's function method. Considering the damage produced by the 2005 Palu earthquake (Mw 6.3), we also estimated peak ground acceleration distribution at Palu City, with values ranging from 100 gal up to 500 gal on the PGA (peak ground acceleration) scale. Peak ground velocity becomes more than 0.3 m/s in some areas, which may likely lead to severe damage to buildings. 展开更多
关键词 seismic ground motion Palu-Koro fault MICROTREMORS PGA.
下载PDF
Seismic Ground Motion Zoning Maps of the Pangxi Region
5
作者 Lei Jiancheng, Zhang Yaoguo, Zhou Rongjun, Pu Xiaohong and Huang ZuzhiSeismological Bureau of Sichuan Province, Chengdu 610041, China 《Earthquake Research in China》 2002年第4期315-331,共17页
The seismotectonic environment and seismic activity in Southwest China region were studied based on new data and new results obtained during the Eighth and Ninth Five-Year Plans, the seismic areas and zones and potent... The seismotectonic environment and seismic activity in Southwest China region were studied based on new data and new results obtained during the Eighth and Ninth Five-Year Plans, the seismic areas and zones and potential seismic source zones were determined, and the relation between seismic activity parameters and ground motion attenuation was determined. Finally the seismic ground motion zoning maps of the Pangxi region was compiled by using the multi-parameter and multi-scheme method. 展开更多
关键词 Pangxi region seismic ground motion Zoning maps Multiple parameter Multiple scheme
下载PDF
The Relationship Among Bedrock Seismic Ground Motion Parameters with Different Exceedance Probabilities in the Panxi Area
6
作者 Lei JianchengSeismological Bureau of Sichuan Province, Chengdu 610041, China 《Earthquake Research in China》 2003年第1期63-72,共10页
Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 year... Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11 89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map. 展开更多
关键词 Exceedance probability Bedrock seismic ground motion parameter RATIO
下载PDF
The effect of local irregular topography on seismic ground motion 被引量:4
7
作者 刘晶波 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第2期309-315,共7页
Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include ... Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include isolated protrUding topography and similar adjacent Protruding topography. The concluaion drawn from thisstudy is that the effects Of isolated protruding topography are remarkably larger for Rayleigh wave propagation than for P and SV they waves; Considering adjacent irregUlar toography ground motion is amplified, the duration of ground motion becomes longer and the speCtral ratios exhibit narrowband peaks Considering adjacent irregular topography and Rayleigh wave Propagation, the theoretical results wb more approach the results obtained in practice. 展开更多
关键词 ground motion irregular topography seismic wave
下载PDF
Seismic Performance Assessment of Reinforced Concrete Box Culverts under Near and Far Fault Seismic Ground Motion Records
8
作者 Lawali Moussa Laminou Wadslin Frenelus +1 位作者 Md Ratan Bhuiyan Md Ibrahim Bhuyan 《World Journal of Engineering and Technology》 2022年第1期40-58,共19页
Studying the critical response characteristics of reinforced concrete box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this w... Studying the critical response characteristics of reinforced concrete box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this work, numerical analysis and assessment of reinforced concrete box culverts for seismic loading in addition to standard static loading from dead and live loads is conducted, aiming to highlight the critical difference in the seismic performances between two and three cell box culverts under near and far-fault ground motion. The results show how and where the seismic loading alters the responses of seismic loading of the models including the effect on safety and failure. The geometrical configurations of the culvert combined with the loading scenarios also significantly influence the magnitude and distribution of the seismic responses. The findings of this work shed light on the critical role of the geometrical configurations and shaking event in the seismic responses of reinforced concrete box culverts and this procedure can be applied as seismic assessment method to any culvert shape, size, and material. 展开更多
关键词 Box Culvert seismic Loading Near-Fault ground motion Far-Fault ground motion seismic Assessment
下载PDF
A random physical model of seismic ground motion field on local engineering site 被引量:8
9
作者 WANG Ding LI Jie 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期2057-2065,共9页
This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on... This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on spatial correlation are synthesized.A two-scale modeling method of seismic random field is proposed.In large scale,the seismic ground motion field on bedrock surface is simplified to a two-dimensional spherical wave field based on the seismic point source and homogeneous isotropic media model.In small scale,the seismic ground motion field on the engineering site has a plane waveform.By introducing the physical models of seismic source,path and local site and considering the randomness of the basic physical parameters,the random model of seismic ground motion field is completed in a random functional form.This model is applied to simulation of the acceleration records at SMART-1 array by using the superposition method of wave group. 展开更多
关键词 seismic ground motion field two-scale modeling random function physical model
原文传递
Orthogonal expansion of ground motion and PDEM-based seismic response analysis of nonlinear structures 被引量:2
10
作者 Li Jie Liu Zhangjun Chen Jianbing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期313-328,共16页
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochas... This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach. 展开更多
关键词 seismic ground motion stochastic processes orthogonal expansion probability density evolution method nonlinear structures stochastic response analysis
下载PDF
Study on the Relationship of Seismic Design Ground Motion at Different Fortification Levels in the Xinjiang Region
11
作者 Tang Lihua Gao Mengtan and Jiang Hui 《Earthquake Research in China》 2007年第4期372-378,共7页
The seismic risk analysis results of 79 cities in Xinjiang are presented, and the bedrock peak ground accelerations under three seismic levels and their ratios are discussed. Then, the relationship between earthquake ... The seismic risk analysis results of 79 cities in Xinjiang are presented, and the bedrock peak ground accelerations under three seismic levels and their ratios are discussed. Then, the relationship between earthquake environments and the seismic risk analysis results of different exceeding probabilities are researched. The results show that minor and major earthquake motion parameters calculated from moderate earthquakes do not have a consistent probability and the ratio of bedrock peak accelerations under different exceedance probabilities are dosdy correlated with earthquake environments. 展开更多
关键词 Fortification level Design seismic ground motion XINJIANG
下载PDF
Analytical investigations of seismic responses for reinforced concrete bridge columns subjected to strong near-fault ground motion 被引量:1
12
作者 苏进国 宋裕祺 +1 位作者 张顺益 黄昭勋 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期237-244,共8页
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforce... Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid. 展开更多
关键词 bridge columns near-fault ground motion seismic modeling
下载PDF
Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion 被引量:1
13
作者 叶昆 李黎 方秦汉 《Journal of Southwest Jiaotong University(English Edition)》 2008年第4期335-345,共11页
An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground m... An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures. 展开更多
关键词 Asymmetric base-isolated structure Near-fault ground motion Far-field ground motion Nonlinear seismic response
下载PDF
Engineering characteristics of near-fault vertical ground motions and their effect on the seismic response of bridges 被引量:3
14
作者 李新乐 窦慧娟 朱晞 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第4期345-350,共6页
A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizont... A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion, focusing on the effect of earthquake magnitude, site conditions, pulse duration, and statistical component. The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes, and the relationship between the vertical and horizontal ground motions is comparatively intricate. In addition, the effect of the near-fault ground motions on bridge performance is analyzed, considering both the material nonlinear characteristics and the P-A effect. 展开更多
关键词 near-fault vertical ground motion peak value ratio spectrum ratio BRIDGE seismic response
下载PDF
Amplification Effect of Peak Ground Motion Acceleration in ClassⅡ and Ⅲ Sites over Shandong Province 被引量:1
15
作者 Diao Ting Chen Shijun Jiang Zaofeng 《Earthquake Research in China》 2011年第4期498-506,共9页
In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil ... In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper. 展开更多
关键词 seismic ground motion Peak ground acceleration Site condition Exceedanceprobability amplification factor
下载PDF
Observations on the application of artificial neural network to predicting ground motion measures
16
作者 Hanping Hong Taojun Liu Chien-Shen Lee 《Earthquake Science》 CSCD 2012年第2期161-175,共15页
Application of the artificial neural network (ANN) to predict pseudospectral acceleration or peak ground acceleration is explored in the study. The training of ANN model is carried out using feed-forward backpropaga... Application of the artificial neural network (ANN) to predict pseudospectral acceleration or peak ground acceleration is explored in the study. The training of ANN model is carried out using feed-forward backpropagation method and about 600 records from 39 California earthquakes. The statistics of the residuals or modeling error for the trained ANN-based models are almost the same as those for the parametric ground motion prediction equations, derived through regression analysis; the residual or modeling error can be modeled as a normal variate. The similarity and differences between the predictions by these two approaches are shown. The trained ANN-based models, however, are not robust because the models with almost identical mean square errors do not always lead to the same predictions. This undesirable behaviour for predicting the ground motion measures has not been shown or discussed in the literature; the presented results, at least, serve to raise questions and caution on this problem. A practical approach to ameliorate this problem, perhaps, is to consider several trained ANN models, and to take the average of the predicted values from the trained ANN models as the predicted ground motion measure. 展开更多
关键词 neural network peak ground acceleration pseudospectral acceleration seismic ground motion measures UNCERTAINTY
下载PDF
Probabilistic seismic hazard assessment of Kazakhstan and Almaty city in peak ground accelerations 被引量:3
17
作者 N.V.Silacheva U.K.Kulbayeva N.A.Kravchenko 《Geodesy and Geodynamics》 2018年第2期131-141,共11页
As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment... As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article. 展开更多
关键词 Probabilistic seismic hazard assessment seismic zoning map Peak ground acceleration seismic sources Seismotectonic setting seismic regime ground motion prediction equations
原文传递
Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites 被引量:6
18
作者 Li Chao Li Hongnan +2 位作者 Hao Hong Bi Kaiming Tian Li 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期475-490,共16页
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens... This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures. 展开更多
关键词 seismic motion simulation onshore and offshore sites ground motion spatial variation depth-varying motions transfer function
下载PDF
Characteristics of horizontal ground motion measures along principal directions 被引量:1
19
作者 K.Goda 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期9-22,共14页
Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias in... Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis. The former is needed for seismic hazard assessment, whereas the latter can be important for assessing structural responses under multi-directional excitations. However, a comprehensive investigation of the pseudo-spectral acceleration (PSA) and of GMPEs conditioned on different axes is currently lacking. This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane, and correlation of the PSA along the principal directions on the horizontal plane. For these, three sets of strong ground motion records, including intraplate California earthquakes, inslab Mexican earthquakes, and interface Mexican earthquakes, are used. The results indicate that one of the principal directions could be considered as quasi-vertical. By focusing on seismic excitations on the horizontal plane, the statistics of the angles between the major response axis and the major principal axis are obtained; GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component; and statistical analysis of residuals associated with GMPEs along the principal directions is carried out. 展开更多
关键词 Arias intensity attenuation relation bi-directional seismic excitation ground motion prediction equation principal direction pseudo-spectral acceleration response axis
下载PDF
Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region 被引量:3
20
作者 Zhi Wei Li Zhao 《Earth and Planetary Physics》 CSCD 2019年第6期526-536,共11页
Low-rise buildings are susceptible to high-frequency ground motion.The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than thos... Low-rise buildings are susceptible to high-frequency ground motion.The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than those of body waves.In this study,we develop a Lg-wave Q model for the Sichuan and Yunnan region in the frequency band of 0.3–2.0 Hz using regional seismic records of 1166 earthquakes recorded at 152 stations.Comparison between the observed pattern of ground motion from real earthquake and model prediction demonstrates the robustness and effectiveness of our Lg-Q model.Then,assuming that the Lg-wave Q structure is the main factor affecting the propagation of the high-frequency ground motions,we calculate the spatial distributions of high-frequency ground motions from scenario earthquakes at different locations in the region using the average Lg-wave attenuation model over the frequency band of 0.3–2.0 Hz.We also use the Lg-Q model to estimate the distribution of cumulative energy of high-frequency ground motions based on the historical seismicity of the Sichuan and Yunnan region.Results show that the Lg-Q model can be used effectively in estimating the spatial distribution of high-frequency seismic energies and thus can contribute to the assessment of seismic hazard to low-rise buildings. 展开更多
关键词 Lg-wave attenuation MODEL HIGH-FREQUENCY ground motions seismic hazards LOW-RISE buildings
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部