Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s...The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.展开更多
Inverse lithography technology(ILT)is intended to achieve optimal mask design to print a lithography target for a given lithography process.Full chip implementation of rigorous inverse lithography remains a challengin...Inverse lithography technology(ILT)is intended to achieve optimal mask design to print a lithography target for a given lithography process.Full chip implementation of rigorous inverse lithography remains a challenging task because of enormous computational resource requirements and long computational time.To achieve full chip ILT solution,attempts have been made by using machine learning techniques based on deep convolution neural network(DCNN).The reported input for such DCNN is the rasterized images of the lithography target;such pure geometrical input requires DCNN to possess considerable number of layers to learn the optical properties of the mask,the nonlinear imaging process,and the rigorous ILT algorithm as well.To alleviate the difficulties,we have proposed the physics based optimal feature vector design for machine learning ILT in our early report.Although physics based feature vector followed by feedforward neural network can provide the solution to machine learning ILT,the feature vector is long and it can consume considerable amount of memory resource in practical implementation.To improve the resource efficiency,we proposed a hybrid approach in this study by combining first few physics based feature maps with a specially designed DCNN structure to learn the rigorous ILT algorithm.Our results show that this approach can make machine learning ILT easy,fast and more accurate.展开更多
As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practica...As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.展开更多
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result...Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.展开更多
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing ...The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.展开更多
This study combined fault identification with a deep learning algorithm and applied a convolutional neural network(CNN)design based on an improved balanced crossentropy(BCE)loss function to address the low accuracy in...This study combined fault identification with a deep learning algorithm and applied a convolutional neural network(CNN)design based on an improved balanced crossentropy(BCE)loss function to address the low accuracy in the intelligent identification of seismic faults and the slow training speed of convolutional neural networks caused by unbalanced training sample sets.The network structure and optimal hyperparameters were determined by extracting feature maps layer by layer and by analyzing the results of seismic feature extraction.The BCE loss function was used to add the parameter which is the ratio of nonfaults to the total sample sets,thereby changing the loss function to find the reference of the minimum weight parameter and adjusting the ratio of fault to nonfault data.The method overcame the unbalanced number of sample sets and improved the iteration speed.After a brief training,the accuracy could reach more than 95%,and gradient descent was evident.The proposed method was applied to fault identification in an oilfield area.The trained model can predict faults clearly,and the prediction results are basically consistent with an actual case,verifying the effectiveness and adaptability of the method.展开更多
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
文摘The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.
文摘Inverse lithography technology(ILT)is intended to achieve optimal mask design to print a lithography target for a given lithography process.Full chip implementation of rigorous inverse lithography remains a challenging task because of enormous computational resource requirements and long computational time.To achieve full chip ILT solution,attempts have been made by using machine learning techniques based on deep convolution neural network(DCNN).The reported input for such DCNN is the rasterized images of the lithography target;such pure geometrical input requires DCNN to possess considerable number of layers to learn the optical properties of the mask,the nonlinear imaging process,and the rigorous ILT algorithm as well.To alleviate the difficulties,we have proposed the physics based optimal feature vector design for machine learning ILT in our early report.Although physics based feature vector followed by feedforward neural network can provide the solution to machine learning ILT,the feature vector is long and it can consume considerable amount of memory resource in practical implementation.To improve the resource efficiency,we proposed a hybrid approach in this study by combining first few physics based feature maps with a specially designed DCNN structure to learn the rigorous ILT algorithm.Our results show that this approach can make machine learning ILT easy,fast and more accurate.
基金This paper was supported by the 2018 Science and Technology Breakthrough Project of Henan Provincial Science and Technology Department(No.182102310694).
文摘As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.
文摘Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.
文摘The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
基金supported by the Natural Science Foundation of Shandong Province(ZR202103050722).
文摘This study combined fault identification with a deep learning algorithm and applied a convolutional neural network(CNN)design based on an improved balanced crossentropy(BCE)loss function to address the low accuracy in the intelligent identification of seismic faults and the slow training speed of convolutional neural networks caused by unbalanced training sample sets.The network structure and optimal hyperparameters were determined by extracting feature maps layer by layer and by analyzing the results of seismic feature extraction.The BCE loss function was used to add the parameter which is the ratio of nonfaults to the total sample sets,thereby changing the loss function to find the reference of the minimum weight parameter and adjusting the ratio of fault to nonfault data.The method overcame the unbalanced number of sample sets and improved the iteration speed.After a brief training,the accuracy could reach more than 95%,and gradient descent was evident.The proposed method was applied to fault identification in an oilfield area.The trained model can predict faults clearly,and the prediction results are basically consistent with an actual case,verifying the effectiveness and adaptability of the method.