Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of ...Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metal-organic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,Brunauer-Emmett-Teller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer﹦3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.展开更多
Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefi...Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefin separators can enhance stability but comes at the cost of increased weight and decreased capacity of the battery.Herein,a novel separator coated with lithium iron phosphate(LFP),an active cathode material,is developed via a simple and scalable process.The LFP-coated separator exhibits superior thermal stability,mechanical strength,electrolyte wettability,and ionic conductivity than the conventional polyethylene(PE)separator.Moreover,the LFP coating can actively participate in the electrochemical reaction during the charge-discharge process,thus enhancing the capacity of the battery.The results show that the LFP-coated separator can increase the cell capacity by 26%,and improve the rate capability by 29%at 4 C compared with the conventional PE separator.The LFP-coated separator exhibits only 1.1%thermal shrinkage at 140°C,a temperature even above the melting point of PE.This work introduces a new strategy for designing separators with dual functions for the next-generation LIBs with improved performance and safety.展开更多
The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction wa...The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system.展开更多
Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,includi...Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,including non-toxicity,structural stability,easy availability,and suitable band gap.We introduced the types of ZISbased nanomaterials and their action mechanism in photocatalytic CO_(2) reduction.Moreover,we put forward prospects in the future development directions of ZIS-based nanomaterials for photocatalytic CO_(2) reduction.展开更多
One porous framework [Zn4(μ4-O)(μ4-4-pca)3]·2(DEF)·2(H2O)(1, 4-H2Pca = 4-pyrazolecarboxylic acid, DEF = N,N-diethylformamide) with MOF-5 type topology has been synthesized solvothermally. Signifi...One porous framework [Zn4(μ4-O)(μ4-4-pca)3]·2(DEF)·2(H2O)(1, 4-H2Pca = 4-pyrazolecarboxylic acid, DEF = N,N-diethylformamide) with MOF-5 type topology has been synthesized solvothermally. Significantly, this compound exhibits high capacity of C2 hydrocarbons. C2H2 capacity could compare with the highest value of the reported MOFs, far exceeding that of MOF-5, as well as the high selectivity adsorption of C2s over C1.展开更多
To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical app...To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical application. The activities of phosphatase, glutathione S-transferase (GSTs), cytochrome P450 (P450), and polyphenol oxidase (PPO) of tested insects were determined in all poisoning stages, including exciting stage, convulsing stage, paralysis stage, and recover stage. The result showed that the activities of both acid phosphatase (ACP) and alkaline phosphatase (AKP) in treated insects were induced by terpinen-4-ol, but ACP was inhibited in paralysis stage. The activities of GSTs were inhibited in exciting stage, convulsing stage, and paralysis stage, but gradually recovered in recover stage. O-demethylase activity of cytochrome P450 was inhibited by terpinen-4-ol, and the inhibition rate in all poisoning stages were 26.27, 46.03, 80.24, and 90.22%, respectively. PPO activities were strongly inhibited by terpinen-4-ol both in vitro and in vivo. In conclusion, the activities of P450, GSTs, and PPO could have relation with toxicity of terpinen-4-ol against larvae of the Mythimna separta, but recover stage of the poisoning insects might be related to GSTs induced. As a new insecticide or synergist, terpinen- 4-ol has a potential value in field of insecticide resistance management.展开更多
A new extractant 1 hexyl 4 ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equili...A new extractant 1 hexyl 4 ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equilibrium aqueous pH and the concentration of extractant were investigated. On the basis of slope analysis, it was proposed that two different kinds of extracted species were formed. For rare earth elements (La~Ho) the extracted species was LnA 3(HA) 3 and for heavy rare earth elements (Er~Lu) the species was LnClA 2(HA) 3. The steric hindrance plays an important role in forming the species. The extraction constants and separation factors of the adjacent rare earths were calculated too. Compared with HDEHP and HEH/EHP, HHEOIPP is a valuable extractant with high separation selectivity. The “tetrad effect” between K ex and atomic number was observed.展开更多
Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N...Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.展开更多
基金financial support from the National Natural Science Foundation of China(52174229 and 52174230)the Natural Science Foundation of Liaoning Province(2022-KF-13-05)+1 种基金Fushun Revitalization Talents Program(FSYC202107010)the program funded by Liaoning Province Education Administration(LJKZ0411).
文摘Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metal-organic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,Brunauer-Emmett-Teller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer﹦3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.
基金supported by the Natural Science foundation of China(51972043)the Sichuan-Hong Kong Collaborative Research Fund(2021YFH0184)the Natural Science foundation of Sichuan Province(2023NSFSC0417)。
文摘Lithium-ion batteries(LIBs)require separators with high performance and safety to meet the increasing demands for energy storage applications.Coating electrochemically inert ceramic materials on conventional polyolefin separators can enhance stability but comes at the cost of increased weight and decreased capacity of the battery.Herein,a novel separator coated with lithium iron phosphate(LFP),an active cathode material,is developed via a simple and scalable process.The LFP-coated separator exhibits superior thermal stability,mechanical strength,electrolyte wettability,and ionic conductivity than the conventional polyethylene(PE)separator.Moreover,the LFP coating can actively participate in the electrochemical reaction during the charge-discharge process,thus enhancing the capacity of the battery.The results show that the LFP-coated separator can increase the cell capacity by 26%,and improve the rate capability by 29%at 4 C compared with the conventional PE separator.The LFP-coated separator exhibits only 1.1%thermal shrinkage at 140°C,a temperature even above the melting point of PE.This work introduces a new strategy for designing separators with dual functions for the next-generation LIBs with improved performance and safety.
基金supported by National Natural Science Foundation of China(22369022)Technology Innovation Leading Program of Shaanxi(2022QFY07-03)。
文摘The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system.
文摘Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,including non-toxicity,structural stability,easy availability,and suitable band gap.We introduced the types of ZISbased nanomaterials and their action mechanism in photocatalytic CO_(2) reduction.Moreover,we put forward prospects in the future development directions of ZIS-based nanomaterials for photocatalytic CO_(2) reduction.
基金supported financially by the National Natural Science Foundation of China(No.21601080)the Key Scientific Research Projects of Higher Education of He'nan Province(16A150016)
文摘One porous framework [Zn4(μ4-O)(μ4-4-pca)3]·2(DEF)·2(H2O)(1, 4-H2Pca = 4-pyrazolecarboxylic acid, DEF = N,N-diethylformamide) with MOF-5 type topology has been synthesized solvothermally. Significantly, this compound exhibits high capacity of C2 hydrocarbons. C2H2 capacity could compare with the highest value of the reported MOFs, far exceeding that of MOF-5, as well as the high selectivity adsorption of C2s over C1.
基金supported by the National Natural Science Foundation of China(30600404)the Key Technologies R&D Program of China during the 10th Five-Year Plan Period(2004BA516A04).
文摘To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical application. The activities of phosphatase, glutathione S-transferase (GSTs), cytochrome P450 (P450), and polyphenol oxidase (PPO) of tested insects were determined in all poisoning stages, including exciting stage, convulsing stage, paralysis stage, and recover stage. The result showed that the activities of both acid phosphatase (ACP) and alkaline phosphatase (AKP) in treated insects were induced by terpinen-4-ol, but ACP was inhibited in paralysis stage. The activities of GSTs were inhibited in exciting stage, convulsing stage, and paralysis stage, but gradually recovered in recover stage. O-demethylase activity of cytochrome P450 was inhibited by terpinen-4-ol, and the inhibition rate in all poisoning stages were 26.27, 46.03, 80.24, and 90.22%, respectively. PPO activities were strongly inhibited by terpinen-4-ol both in vitro and in vivo. In conclusion, the activities of P450, GSTs, and PPO could have relation with toxicity of terpinen-4-ol against larvae of the Mythimna separta, but recover stage of the poisoning insects might be related to GSTs induced. As a new insecticide or synergist, terpinen- 4-ol has a potential value in field of insecticide resistance management.
文摘A new extractant 1 hexyl 4 ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equilibrium aqueous pH and the concentration of extractant were investigated. On the basis of slope analysis, it was proposed that two different kinds of extracted species were formed. For rare earth elements (La~Ho) the extracted species was LnA 3(HA) 3 and for heavy rare earth elements (Er~Lu) the species was LnClA 2(HA) 3. The steric hindrance plays an important role in forming the species. The extraction constants and separation factors of the adjacent rare earths were calculated too. Compared with HDEHP and HEH/EHP, HHEOIPP is a valuable extractant with high separation selectivity. The “tetrad effect” between K ex and atomic number was observed.
基金financial support from the National Natural Science Foundation of China (Nos. 51672186, 21676175)
文摘Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.