In the present study, the structural modification of sand cast Al-12wt%Si alloy with sulfur/sodium and its effect on mechanical properties were investigated. Different addition levels of sulfur and sodium were used to...In the present study, the structural modification of sand cast Al-12wt%Si alloy with sulfur/sodium and its effect on mechanical properties were investigated. Different addition levels of sulfur and sodium were used to modify and produce castings of the same shape and size from the alloy. The results indicated that the addition of sodium or sulfur to eutectic Al-Si alloy can modify the Al-Si eutectic morphology from needle-like eutectic silicon structure to fine-scale eutectic silicon structure with significant improvement in mechanical properties of the alloy. The optimum levels of modification by sodium flux (60% NaF and 40% NaCl) and sulfur were found to be 0.6% - 1.0% and 0.02% - 0.05% of the weight of the alloy respectively. The alloy modified with 0.6% Na flux had the best mechanical properties closely followed by the one modified with 0.02% sulfur. Over modification of the alloy with sodium produced over modification band which consisted of aluminum dendrites and coarse silicon particles in the microstructure of the alloy. Increase in concentration of sulfur decreased the degree of fineness of the eutectic silicon structure with significant decrease in mechanical properties of the alloy and this is suggested to be as a result of the presence of a brittle sulfur compound at the grain interfaces of the alloy.展开更多
To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using...To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using a simple process without chemical input. The raw sand samples were taken from the Ivorian sedimentary basin, from Maféré and Assinie areas, C<span style="white-space:nowrap;">ô</span>te d’Ivoire. Wet sieving and attrition technique were used for the purification process. The results from the energy dispersive spectrometer (EDS) analyses of the raw and treated samples show a significant increase of silica content and a significant reduction of impurities. The silica content (SiO<sub>2</sub>) of the sand of Maféré increases from 98.73% ± 0.15% to 99.92% ± 0.05%. And the sand of Assinie increased from 98.82% ± 0.67% in the raw samples to 99.44% ± 0.27% after treatment. The rate of iron oxide and alumina is reduced in these sands. Moreover, the sand of Maféré contains 53.2% of grains of size lower than 500 microns and that of Assinie contains 29.30%. Regarding the chemical composition of these purified sands, they meet the standard BS2975s, the American Ceramic Society and the National Bureau of Standards for window glass making.展开更多
文摘In the present study, the structural modification of sand cast Al-12wt%Si alloy with sulfur/sodium and its effect on mechanical properties were investigated. Different addition levels of sulfur and sodium were used to modify and produce castings of the same shape and size from the alloy. The results indicated that the addition of sodium or sulfur to eutectic Al-Si alloy can modify the Al-Si eutectic morphology from needle-like eutectic silicon structure to fine-scale eutectic silicon structure with significant improvement in mechanical properties of the alloy. The optimum levels of modification by sodium flux (60% NaF and 40% NaCl) and sulfur were found to be 0.6% - 1.0% and 0.02% - 0.05% of the weight of the alloy respectively. The alloy modified with 0.6% Na flux had the best mechanical properties closely followed by the one modified with 0.02% sulfur. Over modification of the alloy with sodium produced over modification band which consisted of aluminum dendrites and coarse silicon particles in the microstructure of the alloy. Increase in concentration of sulfur decreased the degree of fineness of the eutectic silicon structure with significant decrease in mechanical properties of the alloy and this is suggested to be as a result of the presence of a brittle sulfur compound at the grain interfaces of the alloy.
文摘To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using a simple process without chemical input. The raw sand samples were taken from the Ivorian sedimentary basin, from Maféré and Assinie areas, C<span style="white-space:nowrap;">ô</span>te d’Ivoire. Wet sieving and attrition technique were used for the purification process. The results from the energy dispersive spectrometer (EDS) analyses of the raw and treated samples show a significant increase of silica content and a significant reduction of impurities. The silica content (SiO<sub>2</sub>) of the sand of Maféré increases from 98.73% ± 0.15% to 99.92% ± 0.05%. And the sand of Assinie increased from 98.82% ± 0.67% in the raw samples to 99.44% ± 0.27% after treatment. The rate of iron oxide and alumina is reduced in these sands. Moreover, the sand of Maféré contains 53.2% of grains of size lower than 500 microns and that of Assinie contains 29.30%. Regarding the chemical composition of these purified sands, they meet the standard BS2975s, the American Ceramic Society and the National Bureau of Standards for window glass making.