Commercial airline companies are continuously seeking to implement strategies for minimizing costs of fuel for their flight routes as acquiring jet fuel represents a significant part of operating and managing expenses...Commercial airline companies are continuously seeking to implement strategies for minimizing costs of fuel for their flight routes as acquiring jet fuel represents a significant part of operating and managing expenses for airline activities.A nonlinear mixed binary mathematical programming model for the airline fuel task is presented to minimize the total cost of refueling in an entire flight route problem.The model is enhanced to include possible discounts in fuel prices,which are performed by adding dummy variables and some restrictive constraints,or by fitting a suitable distribution function that relates prices to purchased quantities.The obtained fuel plan explains exactly the amounts of fuel in gallons to be purchased from each airport considering tankering strategy while minimizing the pertinent cost of the whole flight route.The relation between the amount of extra burnt fuel taken through tinkering strategy and the total flight time is also considered.A case study is introduced for a certain flight rotation in domestic US air transport route.The mathematical model including stepped discounted fuel prices is formulated.The problem has a stochastic nature as the total flight time is a random variable,the stochastic nature of the problem is realistic and more appropriate than the deterministic case.The stochastic style of the problem is simulated by introducing a suitable probability distribution for the flight time duration and generating enough number of runs to mimic the probabilistic real situation.Many similar real application problems are modelled as nonlinear mixed binary ones that are difficult to handle by exact methods.Therefore,metaheuristic approaches are widely used in treating such different optimization tasks.In this paper,a gaining sharing knowledge-based procedure is used to handle the mathematical model.The algorithm basically based on the process of gaining and sharing knowledge throughout the human lifetime.The generated simulation runs of the example are solved using the proposed algorithm,and the resulting distribution outputs for the optimum purchased fuel amounts from each airport and for the total cost and are obtained.展开更多
The vehicle routing problem (VRP) can be described as the problem of designing the optimal delivery or collection routes from one or several depots to a number of geographically scattered customers, subject to load co...The vehicle routing problem (VRP) can be described as the problem of designing the optimal delivery or collection routes from one or several depots to a number of geographically scattered customers, subject to load constraints. The routing decision involves determining which of the demand s will be satisfied by each vehicle and what route each vehicle will follow in s erving its assigned demand in order to minimize total delivery cost. In this pap er, a methodology for the design of VRP by integrating optimization and simulate d annealing (SA) approach is presented hierarchically. To express the problem of vehicle routing, a new mathematical formulation is first conducted. The objecti ve function involves both the delivery cost and the vehicle acquisition cost wit h load constraints. A heuristic is then proposed to solve this problem by using SA procedure in conjunction with any solution procedure of travelling salesman p roblem (TSP). The initial configuration is arranged as one vehicle route ser ving one customer. The SA searching procedure is then developed to combine custo mer to any one of the vehicle routes existed in the system if the capacity and c ost are attractive. An important concept of this proposed heuristic is that it attempts to minimize total number of vehicle required in the system on the b asis of the fixed cost and the variable cost view points. In addition, this appr oach can be easily adapted to accommodate many additional problem complexities.展开更多
The usage of each private electric vehicle(PrEV)is a repeating behavior process composed by driving,parking,discharging and charging,in which PrEV shows obvious procedural characteristics.To analyze the procedural cha...The usage of each private electric vehicle(PrEV)is a repeating behavior process composed by driving,parking,discharging and charging,in which PrEV shows obvious procedural characteristics.To analyze the procedural characteristics,this paper proposes a procedural simulation method.The method aggregates the behavior process regularity of the PrEV cluster to model the cluster’s charging load.Firstly,the basic behavior process of each PrEV is constructed by referring the statistical datasets of the traditional private non-electric vehicles.Secondly,all the basic processes are set as a simulation starting point,and they are dynamically reconstructed by several constraints.The simulation continues until the steady state of charge(SOC)distribution and behavior regularity of the PrEV cluster are obtained.Lastly,based on the obtained SOC and behavior regularity information,the PrEV cluster’s behavior processes are simulated again to make the aggregating charging load model available.Examples for several scenarios show that the proposed method can improve the reliability of modeling by grasping the PrEV cluster’s procedural characteristics.展开更多
基金The research is funded by Deanship of Scientific Research at King Saud University research group number RG-1436-040.
文摘Commercial airline companies are continuously seeking to implement strategies for minimizing costs of fuel for their flight routes as acquiring jet fuel represents a significant part of operating and managing expenses for airline activities.A nonlinear mixed binary mathematical programming model for the airline fuel task is presented to minimize the total cost of refueling in an entire flight route problem.The model is enhanced to include possible discounts in fuel prices,which are performed by adding dummy variables and some restrictive constraints,or by fitting a suitable distribution function that relates prices to purchased quantities.The obtained fuel plan explains exactly the amounts of fuel in gallons to be purchased from each airport considering tankering strategy while minimizing the pertinent cost of the whole flight route.The relation between the amount of extra burnt fuel taken through tinkering strategy and the total flight time is also considered.A case study is introduced for a certain flight rotation in domestic US air transport route.The mathematical model including stepped discounted fuel prices is formulated.The problem has a stochastic nature as the total flight time is a random variable,the stochastic nature of the problem is realistic and more appropriate than the deterministic case.The stochastic style of the problem is simulated by introducing a suitable probability distribution for the flight time duration and generating enough number of runs to mimic the probabilistic real situation.Many similar real application problems are modelled as nonlinear mixed binary ones that are difficult to handle by exact methods.Therefore,metaheuristic approaches are widely used in treating such different optimization tasks.In this paper,a gaining sharing knowledge-based procedure is used to handle the mathematical model.The algorithm basically based on the process of gaining and sharing knowledge throughout the human lifetime.The generated simulation runs of the example are solved using the proposed algorithm,and the resulting distribution outputs for the optimum purchased fuel amounts from each airport and for the total cost and are obtained.
文摘The vehicle routing problem (VRP) can be described as the problem of designing the optimal delivery or collection routes from one or several depots to a number of geographically scattered customers, subject to load constraints. The routing decision involves determining which of the demand s will be satisfied by each vehicle and what route each vehicle will follow in s erving its assigned demand in order to minimize total delivery cost. In this pap er, a methodology for the design of VRP by integrating optimization and simulate d annealing (SA) approach is presented hierarchically. To express the problem of vehicle routing, a new mathematical formulation is first conducted. The objecti ve function involves both the delivery cost and the vehicle acquisition cost wit h load constraints. A heuristic is then proposed to solve this problem by using SA procedure in conjunction with any solution procedure of travelling salesman p roblem (TSP). The initial configuration is arranged as one vehicle route ser ving one customer. The SA searching procedure is then developed to combine custo mer to any one of the vehicle routes existed in the system if the capacity and c ost are attractive. An important concept of this proposed heuristic is that it attempts to minimize total number of vehicle required in the system on the b asis of the fixed cost and the variable cost view points. In addition, this appr oach can be easily adapted to accommodate many additional problem complexities.
基金This work is jointly supported by the National Natural Science Foundation of China(No.51377035)NSFCRCUK_EPSRC(No.51361130153).
文摘The usage of each private electric vehicle(PrEV)is a repeating behavior process composed by driving,parking,discharging and charging,in which PrEV shows obvious procedural characteristics.To analyze the procedural characteristics,this paper proposes a procedural simulation method.The method aggregates the behavior process regularity of the PrEV cluster to model the cluster’s charging load.Firstly,the basic behavior process of each PrEV is constructed by referring the statistical datasets of the traditional private non-electric vehicles.Secondly,all the basic processes are set as a simulation starting point,and they are dynamically reconstructed by several constraints.The simulation continues until the steady state of charge(SOC)distribution and behavior regularity of the PrEV cluster are obtained.Lastly,based on the obtained SOC and behavior regularity information,the PrEV cluster’s behavior processes are simulated again to make the aggregating charging load model available.Examples for several scenarios show that the proposed method can improve the reliability of modeling by grasping the PrEV cluster’s procedural characteristics.