The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
Direct time-domain simulation of floating structures has advantages:it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time...Direct time-domain simulation of floating structures has advantages:it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.展开更多
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a t...This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.展开更多
Contact reactions of guide surfaces of assembly interfaces lead to the decreasing of theirs lateral and angular misalignments. The focus of this paper is the development of algorithms for computation of guide surfaces...Contact reactions of guide surfaces of assembly interfaces lead to the decreasing of theirs lateral and angular misalignments. The focus of this paper is the development of algorithms for computation of guide surfaces contact forces with acceptable engineering accuracy for real time simulation of assembly operations. Therefore, each complex guide surface is described as a set of contacting elements. Each contacting element for one's part can be represented by a finite set of geometric primitives which geometry is described by low order algebraic equations. So contact conditions and geometric parameters for all pairs of primitives are determined by analytical expressions. Math models are developed for two classes of contact interaction. The first class includes all cases when each contacting surface has several degrees of freedom of motion. Therefore, contact reactions introduced into differential equations of motion are calculated by using contacting elements penetrations, stiffness and damping parameters. The second class corresponds to all cases when one of contacting surfaces has insignificant inertia and only one degree of freedom of relative displacement counteracted by a spring. Here contact reactions are calculated from spring tension with any practical accuracy. This is very useful in some practical applications. Presented algorithms provide real time simulation together with some approaches for reduction of redundant comnutations.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations...The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.展开更多
Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic est...Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic estimation of ground condition and construction time and costs is proposed, which is an integration of the ground prediction approach based on Markov process, and the time and cost variance analysis based on Monte-Carlo (MC) simulation. The former provides the probabilistic description of ground classification along tunnel alignment according to the geological information revealed from geological profile and boreholes. The latter provides the probabilistic description of the expected construction time and costs for each operation according to the survey feedbacks from experts. Then an engineering application to Hamro tunnel is presented to demonstrate how the ground condition and the construction time and costs are estimated in a probabilistic way. In most items, in order to estimate the data needed for this methodology, a number of questionnaires are distributed among the tunneling experts and finally the mean values of the respondents are applied. These facilitate both the owners and the contractors to be aware of the risk that they should carry before construction, and are useful for both tendering and bidding.展开更多
One of the key factors in a profitable open-pit mine is the efficiency of the waste disposal system. Using GPS-technology, the truck-dispatching decisions can be made in real-time but the chosen strategy has a crucial...One of the key factors in a profitable open-pit mine is the efficiency of the waste disposal system. Using GPS-technology, the truck-dispatching decisions can be made in real-time but the chosen strategy has a crucial role. Therefore, finding the optimal dispatching strategy for truck-shovel operations is extremely important. Dispatching strategies have been reported in the literature, but the comparison of these strategies is still missing. This paper illustrates the differences between the strategies by conducting a stochastic simulation study based on the data gathered from an actual mine. The findings underline the importance of the global vision in dispatching decisions.展开更多
A new algorithm namely the interval sampling method, applicable to the analysisof steady-state simulation output is proposed. This algorithm uses the time series analysisto carry out conrrelation analysis of the stead...A new algorithm namely the interval sampling method, applicable to the analysisof steady-state simulation output is proposed. This algorithm uses the time series analysisto carry out conrrelation analysis of the steady-state simulation output so as to obtain theobservation data which are actually uncorrelated in nature. On the basis of theseuncorrelated data gathered, some satisfactory deductions cam be made on the data under re search. A comparison between batch means method and the interval sampling method hasbeen performed by taking the M/M/l queuing system as an example. The results attestedthat the interval sampling method is mere accurate than the batch means method.展开更多
The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. ...The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. A modified non-equilibrium plasma kinetic model was developed to simulate the temporal evolution of particles produced during nanosecond discharge and its afterglow. As important roles in ignition, path fluxes of O and H radicals were analyzed in detail. Different strength of E/N and different discharge duration were applied to the discharge process in this study. And the results presented that a deposited energy of 1–30 m J·cm^(-3) could dramatically reduce the ignition delay time. Furthermore, temperature and radicals analysis was conducted to investigate the effect of non-equilibrium plasma on production of intermediate radicals. Finally, sensitivity analysis was employed to have further understanding on ignition chemistries of the mixture under nanosecond discharge.展开更多
The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching proce...The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching process is of great significance to ensure construction safety in actual projects. In this paper, a new launching technology is proposed that is based on the foundation of the three-bucket jacket for offshore wind turbine. A complete time domain simulation of the launching process of three-bucket jacket foundation is carried out by a theoretical analysis combined with hydrodynamic software Moses. At the same time, the effects of different initial air storage and sea conditions on the motion response of the structure and the hoisting cable tension are studied. The results show that the motion response of the structure is the highest when it is lowered to 1.5 times the bucket height. The natural period of each degree of freedom of the structure increases with the increase of the lowering depth. The structural motion response and the hoisting cable tension vary greatly in the early phases of Stages Ⅰ and Ⅲ, smaller in Stage Ⅱ, and gradually stabilize in the middle and late phases of Stage Ⅲ.展开更多
The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedba...The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedback input from the floater motions. Thus, mooring line dynamics and damping effects are artificially simulated in real time, based on a computer-based model of the problem. In consideration of the nonlinear characteristics of the sea platform catenary mooring line, the equations of the mooring line motion are formulated by using the lumped-mass method and the dynamic response of several points on the mooring line is investigated by the time and frequency domain analysis method. The dynamic response of the representative point on the mooring line is analyzed under the condition of two different corresponding upper endpoint movements namely sine wave excitation and random wave excitation. The corresponding laws of the dynamic response between the equivalent water depth truncated points at different locations and the upper endpoint are obtained, which can provide technical support for further study of the active hybrid model test.展开更多
Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-d...Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-dimensional frequency domain theory and an impulse response function method based on the potential flow theory, and global ship motion is examined coupling with nonlinear tank sloshing which is simulated by viscous flow theory. Based on the open source Computational Fluid Dynamics (CFD) development platform Open Field Operation and Manipulation (OpenFOAM), numerical calculation of ship motion coupled with tank sloshing is achieved and the corresponding numerical simulation and validation are carried out. With this method, the interactions of wave, ship body and tank sloshing are completely taken into consideration. This method has quite high efficiency for it takes advantage of potential flow theory for outer flow field and viscous flow theory for inside tank sloshing respectively. The numerical and experimental results of the ship motion agree well with each other.展开更多
The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic ro...The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic rod theory coupled with a wake oscillator model.In this numerical simulation,the nonlinear motion equations of the riser with large deformation features are established in a global coordinate system to avoid the transformation between global and local coordinate systems,and are discretized with the time-domain finite element method(FEM).A wakeoscillator model is employed to study the vortex shedding,and the lift force generated by the wake flow is described in a van der Pol equation.A Newmark-βiterative scheme is used to solve their coupling equation for the VIV response of the SWR.The developed model is validated against the existing experimental results for the VIV response of the top-tension riser(TTR).Then,the numerical simulations are executed to determine VIV characteristics of the SWR.The effects of both flow velocity and the spanwise length of the flow field on the drag coefficient in the inline(IL)direction and the lift coefficient in the CF direction are investigated systematically.The results indicate that compared with TTR,the low frequency and multi-modal vibration are the main components of the SWR due to the large deformation and flexible characteristics.For shear flow,the multi-frequency resonance dominates the VIV response of the SWR,especially at the hang-off segment.展开更多
In this paper,a reducedmorphological transformation model with spatially dependent composition and elastic modulus is considered.The parareal in time algorithm introduced by Lions et al.is developed for longer-time si...In this paper,a reducedmorphological transformation model with spatially dependent composition and elastic modulus is considered.The parareal in time algorithm introduced by Lions et al.is developed for longer-time simulation.The fine solver is based on a second-order scheme in reciprocal space,and the coarse solver is based on a multi-model backward Euler scheme,which is fast and less expensive.Numerical simulations concerning the composition with a randomnoise and a discontinuous curve are performed.Some microstructure characteristics at very low temperature are obtained by a variable temperature technique.展开更多
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance meth...Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.展开更多
Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-w...Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.展开更多
In this work, gamma-ray spectroscopy based on semiconductor hyper pure germanium (HPGe) detector was used to evaluate the activity concentrations of the natural radionuclides (U-238 (Ra-226), Th-232 and K-40) and the ...In this work, gamma-ray spectroscopy based on semiconductor hyper pure germanium (HPGe) detector was used to evaluate the activity concentrations of the natural radionuclides (U-238 (Ra-226), Th-232 and K-40) and the fallout nuclide (Cs-137) for thirty samples of igneous and sedimentary rocks of Al-Atawilah (Al-Baha). The mean values of the activity concentrations of U-238 (Ra-226), Th-232, K-40 and Cs-137 in the igneous samples are found as (11.0, 11.50, 1172.71, 1.47) Bq/Kg respectively. In the sedimentary rocks, the mean values of the activity concentrations of the natural radionuclides (U-238 (Ra-226), Th-232 and K-40) and the fallout nuclide (Cs-137) equal to (12.04, 13.18, 1131.36, 1.60) Bq/Kg respectively. The averages of radiological hazards (<em>Ra</em><sub><em>eq</em></sub>, <em>H</em><sub><em>ex</em></sub> and <em>I</em><sub><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">γ</span></span></em></sub>) were calculated and found to be within the UNSCEAR permissible limit values (370 Bq/kg for <em>Ra</em><sub><em>eq</em></sub>, and 1 for <em>H</em><sub><em>ex</em></sub> and <em>I</em><sub><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">γ</span></span></em></sub>), except for a slight increase of average value of <em>I</em><sub><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">γ</span></span></em></sub> in the igneous rock samples (1.36). The results indicate that the dose rate values depend on the kind of rocks (high in some igneous rock samples, and most of sedimentary rock samples have low dose rate). The activities of naturalnuclides were predicted and simulated in T time using a written MATLAB R2020a script based on the average activity concentrations and respective half-lives of U-238 and Th-232 series, and K-40, this is to evaluate the future effects of natural radionuclides on the population and estimate the human inputs in the future.展开更多
By utilizing a Fabry–Perot (FP) nanocavity adjacent to T-shaped gap waveguide ports, spectrally selective filtering is realized. When the wavelength of incident light corresponds to the resonance wavelength of the ...By utilizing a Fabry–Perot (FP) nanocavity adjacent to T-shaped gap waveguide ports, spectrally selective filtering is realized. When the wavelength of incident light corresponds to the resonance wavelength of the FP nanocavity, the surface plasmons are captured inside the nanocavity, and light is highly reflected from this port. The resonance wavelength is determined by using Fabry–Perot resonance condition for the nanocavity. For any desired filtering frequency the dimension of the nanocavity can be tailored. The numerical results are based on the two-dimensional finite difference time domain simulation under a perfectly matched layer absorbing boundary condition. The analytical and simulation results indicate that the proposed structure can be utilized for filtering and splitting applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
基金Supported by the National Natural Science Foundation of China under Grant No.10572041,50779008 and the 111 Project
文摘Direct time-domain simulation of floating structures has advantages:it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.
基金Suppirted by the Programme of Introducing Talents of Discipline to Universities(B07019)
文摘This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.
文摘Contact reactions of guide surfaces of assembly interfaces lead to the decreasing of theirs lateral and angular misalignments. The focus of this paper is the development of algorithms for computation of guide surfaces contact forces with acceptable engineering accuracy for real time simulation of assembly operations. Therefore, each complex guide surface is described as a set of contacting elements. Each contacting element for one's part can be represented by a finite set of geometric primitives which geometry is described by low order algebraic equations. So contact conditions and geometric parameters for all pairs of primitives are determined by analytical expressions. Math models are developed for two classes of contact interaction. The first class includes all cases when each contacting surface has several degrees of freedom of motion. Therefore, contact reactions introduced into differential equations of motion are calculated by using contacting elements penetrations, stiffness and damping parameters. The second class corresponds to all cases when one of contacting surfaces has insignificant inertia and only one degree of freedom of relative displacement counteracted by a spring. Here contact reactions are calculated from spring tension with any practical accuracy. This is very useful in some practical applications. Presented algorithms provide real time simulation together with some approaches for reduction of redundant comnutations.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
基金the Chinese Academy of Sciences under the Innovative Project"Multi-scale modeling and simulation in complex Systems" (KJCX-SW-L08)the National Basic Research Program of China (973 Program) (2007CB814800) the National Natural Science Foundation of China (10325211, 10628206,10732090 and 10672012)
文摘The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.
文摘Ground condition and construction (excavation and support) time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic estimation of ground condition and construction time and costs is proposed, which is an integration of the ground prediction approach based on Markov process, and the time and cost variance analysis based on Monte-Carlo (MC) simulation. The former provides the probabilistic description of ground classification along tunnel alignment according to the geological information revealed from geological profile and boreholes. The latter provides the probabilistic description of the expected construction time and costs for each operation according to the survey feedbacks from experts. Then an engineering application to Hamro tunnel is presented to demonstrate how the ground condition and the construction time and costs are estimated in a probabilistic way. In most items, in order to estimate the data needed for this methodology, a number of questionnaires are distributed among the tunneling experts and finally the mean values of the respondents are applied. These facilitate both the owners and the contractors to be aware of the risk that they should carry before construction, and are useful for both tendering and bidding.
文摘One of the key factors in a profitable open-pit mine is the efficiency of the waste disposal system. Using GPS-technology, the truck-dispatching decisions can be made in real-time but the chosen strategy has a crucial role. Therefore, finding the optimal dispatching strategy for truck-shovel operations is extremely important. Dispatching strategies have been reported in the literature, but the comparison of these strategies is still missing. This paper illustrates the differences between the strategies by conducting a stochastic simulation study based on the data gathered from an actual mine. The findings underline the importance of the global vision in dispatching decisions.
文摘A new algorithm namely the interval sampling method, applicable to the analysisof steady-state simulation output is proposed. This algorithm uses the time series analysisto carry out conrrelation analysis of the steady-state simulation output so as to obtain theobservation data which are actually uncorrelated in nature. On the basis of theseuncorrelated data gathered, some satisfactory deductions cam be made on the data under re search. A comparison between batch means method and the interval sampling method hasbeen performed by taking the M/M/l queuing system as an example. The results attestedthat the interval sampling method is mere accurate than the batch means method.
基金Supported by the National Natural Science Foundation of China(No.51376021)the Fundamental Research Funds for the Central Universities(No.2015YJS146)
文摘The effects of nanosecond discharge on ignition characteristics of a stoichiometric methane–air mixture without inert diluent gas were studied by numerical simulation at 0.1 MPa and an initial temperature of 1300 K. A modified non-equilibrium plasma kinetic model was developed to simulate the temporal evolution of particles produced during nanosecond discharge and its afterglow. As important roles in ignition, path fluxes of O and H radicals were analyzed in detail. Different strength of E/N and different discharge duration were applied to the discharge process in this study. And the results presented that a deposited energy of 1–30 m J·cm^(-3) could dramatically reduce the ignition delay time. Furthermore, temperature and radicals analysis was conducted to investigate the effect of non-equilibrium plasma on production of intermediate radicals. Finally, sensitivity analysis was employed to have further understanding on ignition chemistries of the mixture under nanosecond discharge.
基金financially supported by the National Natural Science Foundation of China (Grant No.52171274)。
文摘The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching process is of great significance to ensure construction safety in actual projects. In this paper, a new launching technology is proposed that is based on the foundation of the three-bucket jacket for offshore wind turbine. A complete time domain simulation of the launching process of three-bucket jacket foundation is carried out by a theoretical analysis combined with hydrodynamic software Moses. At the same time, the effects of different initial air storage and sea conditions on the motion response of the structure and the hoisting cable tension are studied. The results show that the motion response of the structure is the highest when it is lowered to 1.5 times the bucket height. The natural period of each degree of freedom of the structure increases with the increase of the lowering depth. The structural motion response and the hoisting cable tension vary greatly in the early phases of Stages Ⅰ and Ⅲ, smaller in Stage Ⅱ, and gradually stabilize in the middle and late phases of Stage Ⅲ.
基金financially supported by the Natural Science Foundation of Zhejiang Province(Grant Nos.Y14E090034 and Y13F020140)the Young Scientist Training Program in Zhejiang Province(Grant No.2013R60G7160040)+1 种基金the State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University for the Open Fund Project(Grant No.1516)the Open Fund Project of Second Institute of Oceanography(Grant No.SOED1706)
文摘The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedback input from the floater motions. Thus, mooring line dynamics and damping effects are artificially simulated in real time, based on a computer-based model of the problem. In consideration of the nonlinear characteristics of the sea platform catenary mooring line, the equations of the mooring line motion are formulated by using the lumped-mass method and the dynamic response of several points on the mooring line is investigated by the time and frequency domain analysis method. The dynamic response of the representative point on the mooring line is analyzed under the condition of two different corresponding upper endpoint movements namely sine wave excitation and random wave excitation. The corresponding laws of the dynamic response between the equivalent water depth truncated points at different locations and the upper endpoint are obtained, which can provide technical support for further study of the active hybrid model test.
文摘Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-dimensional frequency domain theory and an impulse response function method based on the potential flow theory, and global ship motion is examined coupling with nonlinear tank sloshing which is simulated by viscous flow theory. Based on the open source Computational Fluid Dynamics (CFD) development platform Open Field Operation and Manipulation (OpenFOAM), numerical calculation of ship motion coupled with tank sloshing is achieved and the corresponding numerical simulation and validation are carried out. With this method, the interactions of wave, ship body and tank sloshing are completely taken into consideration. This method has quite high efficiency for it takes advantage of potential flow theory for outer flow field and viscous flow theory for inside tank sloshing respectively. The numerical and experimental results of the ship motion agree well with each other.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52111530137 and 52025112)the Natural Science Found of Jiangsu Province(Grant No.BK20160556)the Jiangsu Provincial Higher Education Natural Science Research Major Project(Grant No.18KJA580003)。
文摘The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic rod theory coupled with a wake oscillator model.In this numerical simulation,the nonlinear motion equations of the riser with large deformation features are established in a global coordinate system to avoid the transformation between global and local coordinate systems,and are discretized with the time-domain finite element method(FEM).A wakeoscillator model is employed to study the vortex shedding,and the lift force generated by the wake flow is described in a van der Pol equation.A Newmark-βiterative scheme is used to solve their coupling equation for the VIV response of the SWR.The developed model is validated against the existing experimental results for the VIV response of the top-tension riser(TTR).Then,the numerical simulations are executed to determine VIV characteristics of the SWR.The effects of both flow velocity and the spanwise length of the flow field on the drag coefficient in the inline(IL)direction and the lift coefficient in the CF direction are investigated systematically.The results indicate that compared with TTR,the low frequency and multi-modal vibration are the main components of the SWR due to the large deformation and flexible characteristics.For shear flow,the multi-frequency resonance dominates the VIV response of the SWR,especially at the hang-off segment.
基金We wish to express our gratitude to the referees for their valuable suggestions.This research was supported by the National Natural Science Foundation of China(Grant No.11171218)the Special Foundation of Shanghai Jiaotong University for Science and Technology Innovation(Grant No.AE0710004).
文摘In this paper,a reducedmorphological transformation model with spatially dependent composition and elastic modulus is considered.The parareal in time algorithm introduced by Lions et al.is developed for longer-time simulation.The fine solver is based on a second-order scheme in reciprocal space,and the coarse solver is based on a multi-model backward Euler scheme,which is fast and less expensive.Numerical simulations concerning the composition with a randomnoise and a discontinuous curve are performed.Some microstructure characteristics at very low temperature are obtained by a variable temperature technique.
基金Funded by National Natural Science Foundation of China(Nos.51478200 and 51178202)
文摘Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.
基金the National Natural Science Foundation of China (Grant No. 50608022)the Foundation of National Science and Technology(GrantNo.2006BAJ03B04)
文摘Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned.
文摘In this work, gamma-ray spectroscopy based on semiconductor hyper pure germanium (HPGe) detector was used to evaluate the activity concentrations of the natural radionuclides (U-238 (Ra-226), Th-232 and K-40) and the fallout nuclide (Cs-137) for thirty samples of igneous and sedimentary rocks of Al-Atawilah (Al-Baha). The mean values of the activity concentrations of U-238 (Ra-226), Th-232, K-40 and Cs-137 in the igneous samples are found as (11.0, 11.50, 1172.71, 1.47) Bq/Kg respectively. In the sedimentary rocks, the mean values of the activity concentrations of the natural radionuclides (U-238 (Ra-226), Th-232 and K-40) and the fallout nuclide (Cs-137) equal to (12.04, 13.18, 1131.36, 1.60) Bq/Kg respectively. The averages of radiological hazards (<em>Ra</em><sub><em>eq</em></sub>, <em>H</em><sub><em>ex</em></sub> and <em>I</em><sub><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">γ</span></span></em></sub>) were calculated and found to be within the UNSCEAR permissible limit values (370 Bq/kg for <em>Ra</em><sub><em>eq</em></sub>, and 1 for <em>H</em><sub><em>ex</em></sub> and <em>I</em><sub><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">γ</span></span></em></sub>), except for a slight increase of average value of <em>I</em><sub><em><span style="white-space:nowrap;"><span style="white-space:nowrap;">γ</span></span></em></sub> in the igneous rock samples (1.36). The results indicate that the dose rate values depend on the kind of rocks (high in some igneous rock samples, and most of sedimentary rock samples have low dose rate). The activities of naturalnuclides were predicted and simulated in T time using a written MATLAB R2020a script based on the average activity concentrations and respective half-lives of U-238 and Th-232 series, and K-40, this is to evaluate the future effects of natural radionuclides on the population and estimate the human inputs in the future.
基金Project supported by the National Key Basic Research Program of China (Grant No. 2013CB328702)
文摘By utilizing a Fabry–Perot (FP) nanocavity adjacent to T-shaped gap waveguide ports, spectrally selective filtering is realized. When the wavelength of incident light corresponds to the resonance wavelength of the FP nanocavity, the surface plasmons are captured inside the nanocavity, and light is highly reflected from this port. The resonance wavelength is determined by using Fabry–Perot resonance condition for the nanocavity. For any desired filtering frequency the dimension of the nanocavity can be tailored. The numerical results are based on the two-dimensional finite difference time domain simulation under a perfectly matched layer absorbing boundary condition. The analytical and simulation results indicate that the proposed structure can be utilized for filtering and splitting applications.