期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High efficient moving object extraction and classification in traffic video surveillance 被引量:1
1
作者 Li Zhihua Zhou Fan Tian Xiang Chen Yaowu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期858-868,共11页
Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is ... Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method. 展开更多
关键词 background model nonparametric model adaptive single gaussian model object classification
下载PDF
GSM-MRF based classification approach for real-time moving object detection 被引量:1
2
作者 Xiang PAN Yi-jun WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期250-255,共6页
Statistical and contextual information are typically used to detect moving regions in image sequences for a fixed camera.In this paper,we propose a fast and stable linear discriminant approach based on Gaussian Single... Statistical and contextual information are typically used to detect moving regions in image sequences for a fixed camera.In this paper,we propose a fast and stable linear discriminant approach based on Gaussian Single Model(GSM)and Markov Random Field(MRF).The performance of GSM is analyzed first,and then two main improvements corresponding to the drawbacks of GSM are proposed:the latest filtered data based update scheme of the background model and the linear classification judgment rule based on spatial-temporal feature specified by MRF.Experimental results show that the proposed method runs more rapidly and accurately when compared with other methods. 展开更多
关键词 Moving object detection Markov Random Field (MRF) gaussian single model (GSM) Fisher Linear Discriminant Analysis (FLDA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部