A new (2+1)-dimensional KdV equation is constructed by using Lax pair generating technique. Exact solutions of the new equation are studied by means of the singular manifold method. Bgcklund transformation in terms...A new (2+1)-dimensional KdV equation is constructed by using Lax pair generating technique. Exact solutions of the new equation are studied by means of the singular manifold method. Bgcklund transformation in terms of the singular manifold is obtained. And localized structures are also investigated.展开更多
This paper investigates the perturbed Boussinesq equation that emerges in shallow water waves.The perturbed Boussinesq equation describes the properties of longitudinal waves in bars,long water waves,plasma waves,quan...This paper investigates the perturbed Boussinesq equation that emerges in shallow water waves.The perturbed Boussinesq equation describes the properties of longitudinal waves in bars,long water waves,plasma waves,quantum mechanics,acoustic waves,nonlinear optics,and other phenomena.As a result,the governing model has significant importance in its own right.The singular manifold method and the unified methods are employed in the proposed model for extracting hyperbolic,trigonometric,and rational function solutions.These solutions may be useful in determining the underlying context of the physical incidents.It is worth noting that the executed methods are skilled and effective for examining nonlinear evaluation equations,compatible with computer algebra,and provide a wide range of wave solutions.In addition to this,the Painlevétest is also used to check the integrability of the governing model.Two-dimensional and threedimensional plots are made to illustrate the physical behavior of the newly obtained exact solutions.This makes the study of exact solutions to other nonlinear evaluation equations using the singular manifold method and unified technique prospective and deserving of further study.展开更多
In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, ...In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, we prove that the (2+ l)-dimensional generalization of shallow water wave equation possesses the Palnlev6 property under a certain condition, and its Lax pair is constructed by applying the singular manifold method. Based on the obtained Lax representation, the Darboux transformation (DT) is constructed. The first iterated solution, second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT. Relevant properties are graphically illustrated, which might be helpful to understanding the propagation processes for ocean waves in shallow water.展开更多
基金Supported by Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070486094
文摘A new (2+1)-dimensional KdV equation is constructed by using Lax pair generating technique. Exact solutions of the new equation are studied by means of the singular manifold method. Bgcklund transformation in terms of the singular manifold is obtained. And localized structures are also investigated.
文摘This paper investigates the perturbed Boussinesq equation that emerges in shallow water waves.The perturbed Boussinesq equation describes the properties of longitudinal waves in bars,long water waves,plasma waves,quantum mechanics,acoustic waves,nonlinear optics,and other phenomena.As a result,the governing model has significant importance in its own right.The singular manifold method and the unified methods are employed in the proposed model for extracting hyperbolic,trigonometric,and rational function solutions.These solutions may be useful in determining the underlying context of the physical incidents.It is worth noting that the executed methods are skilled and effective for examining nonlinear evaluation equations,compatible with computer algebra,and provide a wide range of wave solutions.In addition to this,the Painlevétest is also used to check the integrability of the governing model.Two-dimensional and threedimensional plots are made to illustrate the physical behavior of the newly obtained exact solutions.This makes the study of exact solutions to other nonlinear evaluation equations using the singular manifold method and unified technique prospective and deserving of further study.
基金Supported by the National Natural Science Foundation of China under Grant No.61072145the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.SQKM201211232016
文摘In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, we prove that the (2+ l)-dimensional generalization of shallow water wave equation possesses the Palnlev6 property under a certain condition, and its Lax pair is constructed by applying the singular manifold method. Based on the obtained Lax representation, the Darboux transformation (DT) is constructed. The first iterated solution, second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT. Relevant properties are graphically illustrated, which might be helpful to understanding the propagation processes for ocean waves in shallow water.