The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousa...The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousands of dermoscopic photographs,each accompanied by gold-standard lesion diagnosis metadata.Annual challenges associated with ISIC datasets have spurred significant advancements,with research papers reporting metrics surpassing those of human experts.Skin cancers are categorized into melanoma and non-melanoma types,with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated.This paper aims to address challenges in skin cancer detection via visual inspection and manual examination of skin lesion images,processes historically known for their laboriousness.Despite notable advancements in machine learning and deep learning models,persistent challenges remain,largely due to the intricate nature of skin lesion images.We review research on convolutional neural networks(CNNs)in skin cancer classification and segmentation,identifying issues like data duplication and augmentation problems.We explore the efficacy of Vision Transformers(ViTs)in overcoming these challenges within ISIC dataset processing.ViTs leverage their capabilities to capture both global and local relationships within images,reducing data duplication and enhancing model generalization.Additionally,ViTs alleviate augmentation issues by effectively leveraging original data.Through a thorough examination of ViT-based methodologies,we illustrate their pivotal role in enhancing ISIC image classification and segmentation.This study offers valuable insights for researchers and practitioners looking to utilize ViTs for improved analysis of dermatological images.Furthermore,this paper emphasizes the crucial role of mathematical and computational modeling processes in advancing skin cancer detection methodologies,highlighting their significance in improving algorithmic performance and interpretability.展开更多
Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the n...Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the negative effects induced by dAGEs on human health.This study investigated the intervening effects of peanut skin procyanidins(PSP)on the dAGEs-induced oxidative stress and systemic inflammation in experimental mice model.Results showed that the accumulation of AGEs in serum,liver,and kidney was significantly increased after mice were fed dAGEs(P<0.05).The expression of advanced glycation product receptor(RAGE)was also significantly increased in liver and kidney(P<0.05).PSP could not only effectively reduce the accumulation of AGEs in serum,liver and kidney of mice,but also reduce the expression of RAGE in liver and kidney of mice.And the levels of pro-inflammatory cytokines interleukin-6(IL-6),tumor necrosis factor(TNF-α),and IL-1βin serum of mice were significantly decreased(P<0.05),while the levels of antiinflammatory factor IL-10 were increased,and the inflammatory injury in mice was improved.In addition,the levels of superoxide dismutase(SOD),glutathione(GSH),catalase(CAT)in liver and kidney of mice were increased(P<0.05),and the level of malondialdehyde(MDA)was decreased(P<0.05),which enhanced the antioxidant capacity of mice in vivo,and improved the oxidative damage of liver and kidney.Molecular docking technique was used to confirm that the parent compound of procyanidins and its main metabolites,such as 3-hydroxyphenylacetic acid,could interact with RAGE,which might inhibit the activation of nuclear transcription factor(NF-κB),and ultimately reduce oxidative stress and inflammation in mice.展开更多
The incidences of nonmelanoma skin cancer are increasing worldwide, and the ongoing war on its treatment necessitates the development of effective and non-invasive methods. Through basic and clinical research, non-inv...The incidences of nonmelanoma skin cancer are increasing worldwide, and the ongoing war on its treatment necessitates the development of effective and non-invasive methods. Through basic and clinical research, non-invasive treatments like Curaderm have been developed, leading to improved quality of life for patients. Excipients, previously considered inactive ingredients, play a crucial role in enhancing the performance of topical formulations. The development of Curaderm emphasizes the importance of understanding the interactions between active ingredients, excipients, and the biological system to create effective and affordable pharmaceutical formulations. The systematic approach taken in the development of Curaderm, starting from the observation of the anticancer activity of natural solasodine glycosides and progressing through toxicological and efficacy studies in cell culture, animals, and humans, has provided insights into the pharmacokinetics and pharmacodynamics of solasodine glycosides. It is crucial to determine these pharmacological parameters within the skin’s biological system for maximal effectiveness and cost-effectiveness of a skin cancer treatment. Curaderm, as a topical treatment for nonmelanoma skin cancer, offers benefits beyond those obtained from other topical treatments, providing hope for improved quality of life for patients.展开更多
Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restr...Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.展开更多
Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-...Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automati...The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions.展开更多
Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex s...Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex structures and are increasingly recognized as efective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional(2D)systems and ethical concerns.The inherent plasticity of skin organoids allows for their construction into physiological and pathological models,enabling the study of skin development and dynamic changes.This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages.Furthermore,it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques,such as 3D printing and microfuidic devices.The review also summarizes and discusses the diverse applications of skin organoids in developmental biology,disease modelling,regenerative medicine,and personalized medicine,while considering their prospects and limitations.展开更多
Background:Collagen peptides(CP),including tripeptides and elastin peptides(EP),are known for their in vitro and in vivo anti-skin aging effects.Despite positive results in animal models,the combination effects of CP ...Background:Collagen peptides(CP),including tripeptides and elastin peptides(EP),are known for their in vitro and in vivo anti-skin aging effects.Despite positive results in animal models,the combination effects of CP and EP and the bioavailability of CP in human studies,particularly in young and middle-aged women,remain underexplored.Objective:To evaluate the effects of an orally administered collagen drink combining CP and EP on the skin health of young and middle-aged women.Materials and Methods:A single-center,randomized,double-blind,parallel-controlled trial was conducted,utilizing the WONDERLABR fish collagen tripeptide beverage.Participants consumed the drink over an 8-week period.Results:Compared to the placebo group,the collagen drink group showed significant improvements in skin hydration(39.19%increase),transepidermal water loss(33.45%decrease),skin elasticity(25.37%increase),dermal collagen content(21.64%increase),pore size(7.94%decrease),wrinkle length(18.09%decrease),skin smoothness(2.85%improvement),and skin roughness(15.32%decrease).Overall pore volume decreased by 60%,and visual assessments indicated a decrease in skin luminosity by 15.20%and smoothness index by 22.55%.Mass spectrometry demonstrated a significant increase in collagen efficacy components,including blood pH and GPH levels(P<0.05).Conclusion:The study confirmed the combination nourishing and anti-skin aging effects of EP and CP on the skin of young and middle-aged women,demonstrating significant improvements in various skin parameters and good bioavailability of collagen peptides.展开更多
As the body’s integumentary system,the skin is vulnerable to injuries.The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality.To this end,multiple tissue-resident cells ...As the body’s integumentary system,the skin is vulnerable to injuries.The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality.To this end,multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue.Such temporally-and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation.In this context,regulatory T cells(Tregs)hold a key role in balancing immune homeostasis and mediating cutaneous wound healing.A comprehensive understanding of Tregs’multifaceted field of activity may help decipher wound pathologies and,ultimately,establish new treatment modalities.Herein,we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair.Further,we discuss how Tregs operate during fibrosis,keloidosis,and scarring.展开更多
The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging...The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.展开更多
With the accelerated rate of urbanization in recent years,air pollution has become an environmental problem that requires urgent resolution,almost all of the world’s population exposed to pollution on a daily basis.A...With the accelerated rate of urbanization in recent years,air pollution has become an environmental problem that requires urgent resolution,almost all of the world’s population exposed to pollution on a daily basis.Among the various air pollutants,the excessive dispersion and suspension of particulate matter(PM)in the air.展开更多
The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical res...The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical responses of nonHermitian systems with anomalous time-reversal symmetry, in both one dimension and two dimensions. Specifically, we focus on whether the systems will exhibit a non-Hermitian skin effect. We employ the theory of generalized Brillouin zone and also numerical methods to show that the anomalous time-reversal symmetry can prevent the skin effect in onedimensional non-Hermitian systems, but is unable to exert the same effectiveness in two-dimensional cases.展开更多
The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(ever...The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(every third isotopes)+112 Sn for full reduced impact parameters using the isospin-dependent quantum molecular dynamics(IQMD)model.The neutron and proton density distributions and root-mean-square radii of the reaction systems were obtained using the Skyrme-Hartree-Fock model,which was used for the phase space initialization of the projectile and target in IQMD.We defined the unified neutron skin thickness asΔRnp=<r^(2)>^(1∕2) n−<r^(2)>^(1∕2)p,which was negative for neutron-deficient nuclei.The unifiedΔRnp values for nuclei with the same relative neutron excess from different isotopic chains were nearly equal,except for extreme neutron-rich isotopes,which is a type of scaling behavior.The yield ratios of the three isotopic chain-induced reactions,which depended on the reduced impact parameter and unified neutron skin thickness,were studied.The results showed that both R(n/p)and R(^(3)H∕^(3)He)decreased with a reduced impact parameter for extreme neutron-deficient isotopes;however,they increased with reduced impact parameters for extreme neutron-rich isotopes,and increased with theΔRnp of the projectiles for all reduced impact parameters.In addition,a scaling phenomenon was observed betweenΔR np and the yield ratios in peripheral colli-sions from different isotopic chain projectiles(except for extreme neutron-rich isotopes).Thus,R(n/p)and R(^(3)H∕^(3)He)from peripheral collisions were suggested as experimental probes for extracting the neutron or proton skin thicknesses of non-extreme neutron-rich nuclei from different isotopic chains.展开更多
During storage at 20℃,specific pear cultivars may exhibit a greasy texture and decline in quality due to fruit senescence.Among these varieties,‘Yuluxiang’is particularly susceptible to peel greasiness,resulting in...During storage at 20℃,specific pear cultivars may exhibit a greasy texture and decline in quality due to fruit senescence.Among these varieties,‘Yuluxiang’is particularly susceptible to peel greasiness,resulting in significant economic losses.Therefore,there is an urgent need for a preservative that can effectively inhibit the development of greasiness.Previous studies have demonstrated the efficacy of 1-methylcyclopropene(1-MCP)in extending the storage period of fruits.We hypothesize that it may also influence the occurrence of postharvest peel greasiness in the‘Yuluxiang’pears.In this study,we treated‘Yuluxiang’pears with 1-MCP.We stored them at 20℃while analyzing the composition and morphology of the surface waxes,recording enzyme activities related to wax synthesis,and measuring indicators associated with fruit storage quality and physiological characteristics.The results demonstrate that prolonged storage at 20℃leads to a rapid increase in skin greasiness,consistent with the observed elevations in L^(*),greasiness score,and the content of total wax and greasy wax components.Moreover,there were indications that cuticular waxes underwent melting,resulting in the formation of an amorphous structure.In comparison to controls,the application of 1-MCP significantly inhibited increments in L^(*) values as well as grease scores while also reducing accumulation rates for oily waxes throughout most stages over its shelf period,additionally delaying transitions from flaky-wax structures towards their amorphous counterparts.During the initial 7 d of storage,several enzymes involved in the biosynthesis and metabolism of greasy wax components,including lipoxygenase(LOX),phospholipase D(PLD),andβ-ketoacyl-CoA synthase(KCS),exhibited an increase followed by a subsequent decline.The activity of LOX during early shelf life(0–7 d)and the KCS activity during middle to late shelf life(14–21 d)were significantly suppressed by 1-MCP.Additionally,1-MCP effectively maintained firmness,total soluble solid(TSS)and titratable acid(TA)contents,peroxidase(POD),and phenylalanine ammonia-lyase(PAL)activities while inhibiting vitamin C degradation and weight loss.Furthermore,it restrained polyphenol oxidase(PPO)activity,ethylene production,and respiration rate increase.These findings demonstrate that 1-MCP not only delays the onset of peel greasiness but also preserves the overall storage quality of‘Yuluxiang’pear at a temperature of 20℃.This study presents a novel approach for developing new preservatives to inhibit pear fruit peel greasiness and provides a theoretical foundation for further research on pear fruit preservation.展开更多
Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperce...Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI).展开更多
Artificial skin involves multidisciplinary efforts,including materials science,biology,medicine,and tissue engineering.Recent studies have aimed at creating skins that are multifunctional,intelligent,and capable of re...Artificial skin involves multidisciplinary efforts,including materials science,biology,medicine,and tissue engineering.Recent studies have aimed at creating skins that are multifunctional,intelligent,and capable of regenerating tissue.In this work,we present a specialized 3D printing ink composed of polyurethane and bioactive glass(PU-BG)and prepare dual-function skin patch by microfluidic-regulated 3D bioprinting(MRBP)technique.The MRBP endows the skin patch with a highly controlled microstructure and superior strength.Besides,an asymmetric tri-layer is further constructed,which promotes cell attachment and growth through a dual transport mechanism based on hydrogen bonds and gradient structure from hydrophilic to superhydrophilic.More importantly,by combining the features of biomedical skin with electronic skin(e-skin),we achieved a biomedical and electronic dual-function skin patch.In vivo experiments have shown that this skin patch can enhance hemostasis,resist bacterial growth,stimulate the regeneration of blood vessels,and accelerate the healing process.Meanwhile,it also mimics the sensory functions of natural skin to realize signal detection,where the sensitivity reached up to 5.87 kPa1,as well as cyclic stability(over 500 cycles),a wide detection range of 0–150 kPa,high pressure resolution of 0.1%under the pressure of 100 kPa.This work offers a versatile and effective method for creating dual-function skin patches and provide new insights into wound healing and tissue repair,which have significant implications for clinical applications.展开更多
Dear Editor,The tuberculin skin test(TST)reagents have continuously improved,with the ESAT6-CFP10(EC)test having recently been introduced,but are seldom based on the direction of the delayed-type hypersensitivity(DTH)...Dear Editor,The tuberculin skin test(TST)reagents have continuously improved,with the ESAT6-CFP10(EC)test having recently been introduced,but are seldom based on the direction of the delayed-type hypersensitivity(DTH)mechanism.Previous studies only partially showed the infiltration and activation of immune cells and the production of cytokines of the skin induration[1,2],and lack the detailed measurements of cell proportions and gene expression in the DTH response.Therefore,in this study,we revealed the comprehensive characteristics of DTH by single-cell RNA sequencing(scRNA-seq)in the guinea pig tuberculosis(TB)model[Experimental Animal Welfare Ethics Committee,Beijing Tuberculosis and Thoracic Tumor Research Institute(2021-064)].展开更多
Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spac...Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface.展开更多
Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep lea...Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep learning-basedConvolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which usedas the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extractionand temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesionphotos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-TermMemory (LSTM) for temporal dependencies, the model achieves a high average recognition accuracy, surpassingprevious methods. The comprehensive evaluation, including accuracy, precision, recall, and F1-score, underscoresthe model’s competence in categorizing skin cancer types. This research contributes a sophisticated model andvaluable guidance for deep learning-based diagnostics, also this model excels in overcoming spatial and temporalcomplexities, offering a sophisticated solution for dermatological diagnostics research.展开更多
文摘The International Skin Imaging Collaboration(ISIC)datasets are pivotal resources for researchers in machine learning for medical image analysis,especially in skin cancer detection.These datasets contain tens of thousands of dermoscopic photographs,each accompanied by gold-standard lesion diagnosis metadata.Annual challenges associated with ISIC datasets have spurred significant advancements,with research papers reporting metrics surpassing those of human experts.Skin cancers are categorized into melanoma and non-melanoma types,with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated.This paper aims to address challenges in skin cancer detection via visual inspection and manual examination of skin lesion images,processes historically known for their laboriousness.Despite notable advancements in machine learning and deep learning models,persistent challenges remain,largely due to the intricate nature of skin lesion images.We review research on convolutional neural networks(CNNs)in skin cancer classification and segmentation,identifying issues like data duplication and augmentation problems.We explore the efficacy of Vision Transformers(ViTs)in overcoming these challenges within ISIC dataset processing.ViTs leverage their capabilities to capture both global and local relationships within images,reducing data duplication and enhancing model generalization.Additionally,ViTs alleviate augmentation issues by effectively leveraging original data.Through a thorough examination of ViT-based methodologies,we illustrate their pivotal role in enhancing ISIC image classification and segmentation.This study offers valuable insights for researchers and practitioners looking to utilize ViTs for improved analysis of dermatological images.Furthermore,this paper emphasizes the crucial role of mathematical and computational modeling processes in advancing skin cancer detection methodologies,highlighting their significance in improving algorithmic performance and interpretability.
基金supported by the Doctoral Science Foundation of Shanxi Agricultural University(2023BQ34)Shanxi Province Work Award Fund Research Project(SXBYKY2022116).
文摘Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the negative effects induced by dAGEs on human health.This study investigated the intervening effects of peanut skin procyanidins(PSP)on the dAGEs-induced oxidative stress and systemic inflammation in experimental mice model.Results showed that the accumulation of AGEs in serum,liver,and kidney was significantly increased after mice were fed dAGEs(P<0.05).The expression of advanced glycation product receptor(RAGE)was also significantly increased in liver and kidney(P<0.05).PSP could not only effectively reduce the accumulation of AGEs in serum,liver and kidney of mice,but also reduce the expression of RAGE in liver and kidney of mice.And the levels of pro-inflammatory cytokines interleukin-6(IL-6),tumor necrosis factor(TNF-α),and IL-1βin serum of mice were significantly decreased(P<0.05),while the levels of antiinflammatory factor IL-10 were increased,and the inflammatory injury in mice was improved.In addition,the levels of superoxide dismutase(SOD),glutathione(GSH),catalase(CAT)in liver and kidney of mice were increased(P<0.05),and the level of malondialdehyde(MDA)was decreased(P<0.05),which enhanced the antioxidant capacity of mice in vivo,and improved the oxidative damage of liver and kidney.Molecular docking technique was used to confirm that the parent compound of procyanidins and its main metabolites,such as 3-hydroxyphenylacetic acid,could interact with RAGE,which might inhibit the activation of nuclear transcription factor(NF-κB),and ultimately reduce oxidative stress and inflammation in mice.
文摘The incidences of nonmelanoma skin cancer are increasing worldwide, and the ongoing war on its treatment necessitates the development of effective and non-invasive methods. Through basic and clinical research, non-invasive treatments like Curaderm have been developed, leading to improved quality of life for patients. Excipients, previously considered inactive ingredients, play a crucial role in enhancing the performance of topical formulations. The development of Curaderm emphasizes the importance of understanding the interactions between active ingredients, excipients, and the biological system to create effective and affordable pharmaceutical formulations. The systematic approach taken in the development of Curaderm, starting from the observation of the anticancer activity of natural solasodine glycosides and progressing through toxicological and efficacy studies in cell culture, animals, and humans, has provided insights into the pharmacokinetics and pharmacodynamics of solasodine glycosides. It is crucial to determine these pharmacological parameters within the skin’s biological system for maximal effectiveness and cost-effectiveness of a skin cancer treatment. Curaderm, as a topical treatment for nonmelanoma skin cancer, offers benefits beyond those obtained from other topical treatments, providing hope for improved quality of life for patients.
基金This work was supported partly by the China Postdoctoral Science Foundation(2023M730201)the Fundamental Research Funds for the Central Universities(2023XKRC027)+1 种基金the Fundamental Research Funds for the 173 project under Grant 2020-JCJQ-ZD-043the project under Grant 22TQ0403ZT07001 and Wei Zhen Limited Liability Company.
文摘Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.
基金supported by the grants from National Research Foundation(NRF,#2021R1A5A2022318,#RS-2023-00220408,#RS-2023-00247485),Republic of Korea.
文摘Inflammatory skin disorders can cause chronic scarring and functional impairments,posing a significant burden on patients and the healthcare system.Conventional therapies,such as corticosteroids and nonsteroidal anti-inflammatory drugs,are limited in efficacy and associated with adverse effects.Recently,nanozyme(NZ)-based hydrogels have shown great promise in addressing these challenges.NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels.The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation.This review highlights the current state of the art in NZ-engineered hydrogels(NZ@hydrogels)for anti-inflammatory and skin regeneration applications.It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness.Additionally,the challenges and future directions in this ground,particularly their clinical translation,are addressed.The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels,offering new possibilities for targeted and personalized skin-care therapies.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
文摘The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions.
基金suppor ted by the National Key Research and Development Program of China(2022YFA1104800)the Beijing Nova Program(20220484100)+6 种基金the National Natural Science Foundation of China(81873939)the Open Research Fund of State Key Laboratory of Cardiovascular Disease,Fuwai Hospital(2022KF-04)the Clinical Medicine Plus X-Young Scholars Projec t,Pek ing Universit y(PKU2022LCXQ003)the Emerging Engineering InterdisciplinaryYoung Scholars Project,Peking University,the Fundamental Research Funds for the Central Universities(PKU2023XGK011)the Open Research Fund of State Key Laboratory of Digital Medical Engineering,Southeast University(2023K-01)the Open Research Fund of Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease,Beijing,China(DXWL2023-01)the Science and Technology Bureau Foundation Application Project of Changzhou(CJ20220118)。
文摘Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex structures and are increasingly recognized as efective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional(2D)systems and ethical concerns.The inherent plasticity of skin organoids allows for their construction into physiological and pathological models,enabling the study of skin development and dynamic changes.This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages.Furthermore,it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques,such as 3D printing and microfuidic devices.The review also summarizes and discusses the diverse applications of skin organoids in developmental biology,disease modelling,regenerative medicine,and personalized medicine,while considering their prospects and limitations.
文摘Background:Collagen peptides(CP),including tripeptides and elastin peptides(EP),are known for their in vitro and in vivo anti-skin aging effects.Despite positive results in animal models,the combination effects of CP and EP and the bioavailability of CP in human studies,particularly in young and middle-aged women,remain underexplored.Objective:To evaluate the effects of an orally administered collagen drink combining CP and EP on the skin health of young and middle-aged women.Materials and Methods:A single-center,randomized,double-blind,parallel-controlled trial was conducted,utilizing the WONDERLABR fish collagen tripeptide beverage.Participants consumed the drink over an 8-week period.Results:Compared to the placebo group,the collagen drink group showed significant improvements in skin hydration(39.19%increase),transepidermal water loss(33.45%decrease),skin elasticity(25.37%increase),dermal collagen content(21.64%increase),pore size(7.94%decrease),wrinkle length(18.09%decrease),skin smoothness(2.85%improvement),and skin roughness(15.32%decrease).Overall pore volume decreased by 60%,and visual assessments indicated a decrease in skin luminosity by 15.20%and smoothness index by 22.55%.Mass spectrometry demonstrated a significant increase in collagen efficacy components,including blood pH and GPH levels(P<0.05).Conclusion:The study confirmed the combination nourishing and anti-skin aging effects of EP and CP on the skin of young and middle-aged women,demonstrating significant improvements in various skin parameters and good bioavailability of collagen peptides.
文摘As the body’s integumentary system,the skin is vulnerable to injuries.The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality.To this end,multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue.Such temporally-and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation.In this context,regulatory T cells(Tregs)hold a key role in balancing immune homeostasis and mediating cutaneous wound healing.A comprehensive understanding of Tregs’multifaceted field of activity may help decipher wound pathologies and,ultimately,establish new treatment modalities.Herein,we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair.Further,we discuss how Tregs operate during fibrosis,keloidosis,and scarring.
文摘The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.
文摘With the accelerated rate of urbanization in recent years,air pollution has become an environmental problem that requires urgent resolution,almost all of the world’s population exposed to pollution on a daily basis.Among the various air pollutants,the excessive dispersion and suspension of particulate matter(PM)in the air.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12304201)。
文摘The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical responses of nonHermitian systems with anomalous time-reversal symmetry, in both one dimension and two dimensions. Specifically, we focus on whether the systems will exhibit a non-Hermitian skin effect. We employ the theory of generalized Brillouin zone and also numerical methods to show that the anomalous time-reversal symmetry can prevent the skin effect in onedimensional non-Hermitian systems, but is unable to exert the same effectiveness in two-dimensional cases.
基金supported by National Natural Science Foundation of China(No.11405025).
文摘The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(every third isotopes)+112 Sn for full reduced impact parameters using the isospin-dependent quantum molecular dynamics(IQMD)model.The neutron and proton density distributions and root-mean-square radii of the reaction systems were obtained using the Skyrme-Hartree-Fock model,which was used for the phase space initialization of the projectile and target in IQMD.We defined the unified neutron skin thickness asΔRnp=<r^(2)>^(1∕2) n−<r^(2)>^(1∕2)p,which was negative for neutron-deficient nuclei.The unifiedΔRnp values for nuclei with the same relative neutron excess from different isotopic chains were nearly equal,except for extreme neutron-rich isotopes,which is a type of scaling behavior.The yield ratios of the three isotopic chain-induced reactions,which depended on the reduced impact parameter and unified neutron skin thickness,were studied.The results showed that both R(n/p)and R(^(3)H∕^(3)He)decreased with a reduced impact parameter for extreme neutron-deficient isotopes;however,they increased with reduced impact parameters for extreme neutron-rich isotopes,and increased with theΔRnp of the projectiles for all reduced impact parameters.In addition,a scaling phenomenon was observed betweenΔR np and the yield ratios in peripheral colli-sions from different isotopic chain projectiles(except for extreme neutron-rich isotopes).Thus,R(n/p)and R(^(3)H∕^(3)He)from peripheral collisions were suggested as experimental probes for extracting the neutron or proton skin thicknesses of non-extreme neutron-rich nuclei from different isotopic chains.
基金supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-RIP)the earmarked fund for the China Agriculture Research System(CARS-28)the Natural Science Foundation of Liaoning Province,China(2021-MS-036)。
文摘During storage at 20℃,specific pear cultivars may exhibit a greasy texture and decline in quality due to fruit senescence.Among these varieties,‘Yuluxiang’is particularly susceptible to peel greasiness,resulting in significant economic losses.Therefore,there is an urgent need for a preservative that can effectively inhibit the development of greasiness.Previous studies have demonstrated the efficacy of 1-methylcyclopropene(1-MCP)in extending the storage period of fruits.We hypothesize that it may also influence the occurrence of postharvest peel greasiness in the‘Yuluxiang’pears.In this study,we treated‘Yuluxiang’pears with 1-MCP.We stored them at 20℃while analyzing the composition and morphology of the surface waxes,recording enzyme activities related to wax synthesis,and measuring indicators associated with fruit storage quality and physiological characteristics.The results demonstrate that prolonged storage at 20℃leads to a rapid increase in skin greasiness,consistent with the observed elevations in L^(*),greasiness score,and the content of total wax and greasy wax components.Moreover,there were indications that cuticular waxes underwent melting,resulting in the formation of an amorphous structure.In comparison to controls,the application of 1-MCP significantly inhibited increments in L^(*) values as well as grease scores while also reducing accumulation rates for oily waxes throughout most stages over its shelf period,additionally delaying transitions from flaky-wax structures towards their amorphous counterparts.During the initial 7 d of storage,several enzymes involved in the biosynthesis and metabolism of greasy wax components,including lipoxygenase(LOX),phospholipase D(PLD),andβ-ketoacyl-CoA synthase(KCS),exhibited an increase followed by a subsequent decline.The activity of LOX during early shelf life(0–7 d)and the KCS activity during middle to late shelf life(14–21 d)were significantly suppressed by 1-MCP.Additionally,1-MCP effectively maintained firmness,total soluble solid(TSS)and titratable acid(TA)contents,peroxidase(POD),and phenylalanine ammonia-lyase(PAL)activities while inhibiting vitamin C degradation and weight loss.Furthermore,it restrained polyphenol oxidase(PPO)activity,ethylene production,and respiration rate increase.These findings demonstrate that 1-MCP not only delays the onset of peel greasiness but also preserves the overall storage quality of‘Yuluxiang’pear at a temperature of 20℃.This study presents a novel approach for developing new preservatives to inhibit pear fruit peel greasiness and provides a theoretical foundation for further research on pear fruit preservation.
基金supported by the National Natural Science Foundation of China(No.52271241 and 52071282)the Applied Basic Research Key Project of Yunnan(202001BB050046)the National Training Programs of Innovation and Entrepreneurship for Undergraduates(No.202210673068 and 202210673002).
文摘Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI).
基金supported by National Natural Science Foundation of China(22278225,82170581,22308160)Natural Science Foundation of Jiangsu Province(BK20211133,BK20230327)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1471)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Artificial skin involves multidisciplinary efforts,including materials science,biology,medicine,and tissue engineering.Recent studies have aimed at creating skins that are multifunctional,intelligent,and capable of regenerating tissue.In this work,we present a specialized 3D printing ink composed of polyurethane and bioactive glass(PU-BG)and prepare dual-function skin patch by microfluidic-regulated 3D bioprinting(MRBP)technique.The MRBP endows the skin patch with a highly controlled microstructure and superior strength.Besides,an asymmetric tri-layer is further constructed,which promotes cell attachment and growth through a dual transport mechanism based on hydrogen bonds and gradient structure from hydrophilic to superhydrophilic.More importantly,by combining the features of biomedical skin with electronic skin(e-skin),we achieved a biomedical and electronic dual-function skin patch.In vivo experiments have shown that this skin patch can enhance hemostasis,resist bacterial growth,stimulate the regeneration of blood vessels,and accelerate the healing process.Meanwhile,it also mimics the sensory functions of natural skin to realize signal detection,where the sensitivity reached up to 5.87 kPa1,as well as cyclic stability(over 500 cycles),a wide detection range of 0–150 kPa,high pressure resolution of 0.1%under the pressure of 100 kPa.This work offers a versatile and effective method for creating dual-function skin patches and provide new insights into wound healing and tissue repair,which have significant implications for clinical applications.
基金supported by the National Natural Science Foundation(81871691)the Beijing Municipal Natural Science Foundation(KZ202110025034).
文摘Dear Editor,The tuberculin skin test(TST)reagents have continuously improved,with the ESAT6-CFP10(EC)test having recently been introduced,but are seldom based on the direction of the delayed-type hypersensitivity(DTH)mechanism.Previous studies only partially showed the infiltration and activation of immune cells and the production of cytokines of the skin induration[1,2],and lack the detailed measurements of cell proportions and gene expression in the DTH response.Therefore,in this study,we revealed the comprehensive characteristics of DTH by single-cell RNA sequencing(scRNA-seq)in the guinea pig tuberculosis(TB)model[Experimental Animal Welfare Ethics Committee,Beijing Tuberculosis and Thoracic Tumor Research Institute(2021-064)].
文摘Boulder spacing in mountain rivers and near-wake flow zones within the boulder array is very useful for fish habitat and growth of aquatic organisms.The present study aims to investigate how the boulder array and spacing influence the near-bed flow structures in a gravel-bed stream.Boulders are staggered over a gravel-bed stream with three different inter-boulder spacing namely(a)large(b)medium and(c)small spacing.An acoustic Doppler velocimeter was used for flow measurements in a rectangular channel and the results were compared with those acquired from numerical simulation.The time-averaged velocity profiles at the near-wake flow zones of boulders experience maximum flow retardation which is an outcome of the boulder-induced form roughness.The ratio of velocity differences associated to form and skin roughness and its positive magnitude reveals the dominance of form roughness closest to the boulders.Form roughness computed is 1.75 to 2 times higher than the skin roughness at the near-wake flow region.In particular,the collective immobile boulders placed at different inter-boulder spacings developed high and low bed shear stresses closest to the boulders.The low bed shear stresses characterised by a secondary peak developed at the trough location of the boulders is attributed to the skin shear stress.Further,the spatial averaging of time-averaged flow quantities gives additional impetus to present an improved illustration of fluid shear stresses.The formation of form-induced shear stress is estimated to be 17%to 23%of doubleaveraged Reynolds shear stress and partially compensates for the damping of time-averaged Reynolds shear stress in the interfacial sub-layer.The quadrant analysis of spatial velocity fluctuations depicts that the form-induced shear stresses are dominant in the interfacial sub-layer and have no significance above the gravel-bed surface.
文摘Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep learning-basedConvolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which usedas the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extractionand temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesionphotos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-TermMemory (LSTM) for temporal dependencies, the model achieves a high average recognition accuracy, surpassingprevious methods. The comprehensive evaluation, including accuracy, precision, recall, and F1-score, underscoresthe model’s competence in categorizing skin cancer types. This research contributes a sophisticated model andvaluable guidance for deep learning-based diagnostics, also this model excels in overcoming spatial and temporalcomplexities, offering a sophisticated solution for dermatological diagnostics research.