In order to provide theoretical basis and data support for improving the production mode of covering,this study investigated the nighttime air temperature formed by multiple layers of films with tunnel sheds and small...In order to provide theoretical basis and data support for improving the production mode of covering,this study investigated the nighttime air temperature formed by multiple layers of films with tunnel sheds and small tunnel sheds as trial subjects.The experiment was carried out in four tunnel sheds with 0 or 2 small tunnel sheds covered by 0,1,2 and 3 layers of films,respectively in Jinan,Shandong Province in winter of 2018.The nighttime air temperatures of tunnel sheds and small tunnel sheds formed by 1,2,3 and 4 layers of plastic film were measured and analyzed to simulate the temperature environment of early-spring season.The results showed that there were little differences between the nighttime air temperatures inside the tunnel sheds which was installed 0-3-layer small tunnel sheds inside,and there were uncertainty in the values of the air temperatures inside and outside the tunnel sheds;and the nighttime temperature conditions were constantly improved with the number of plastic film layers increasing under the conditions of this study.The analysis indicated that the mechanism of raising the temperature surrounded by plastic film was not only due to its own thermal parameter (thermal conductivity).MATLAB fitting analysis results showed that the increment of nighttime temperature in multi-film coverings became smaller with the number of film layers increasing.In this study,the number of layers in multi-film covering should not exceed 5 layers.展开更多
This work investigated the absorbed dose to water rate under reference conditions in a Cyberknife VSI system using radiochromic films EBT3 and MD-V3 and three ionization chambers: an Exradin A12 and two FC65P Welh&...This work investigated the absorbed dose to water rate under reference conditions in a Cyberknife VSI system using radiochromic films EBT3 and MD-V3 and three ionization chambers: an Exradin A12 and two FC65P Welhöfer Scanditronix with different serial numbers. The correction factor,, was studied using a Varian iX linac and the Cyberknife system. The measurements in the Varian iX were performed in a 10 × 10 cm2 field, 10 cm depth in liquid water at 90 cm and 70 cm SSD and in a 5.4 × 5.4 cm2 field, 10 cm depth at 70 cm SSD to simulate the Cyberknife conditions. In the Cyberknife system, measurements were performed using ionization chambers and both film types at 70 cm SSD and 10 cm depth in its 6 cm diameter reference field. The results indicate that ?is independent of the dosimeters and the evaluation methods. Maximum differences of 0.22% - 0.55% (combined uncertainties of 1.22% - 1.98%, k = 1) are obtained on ?using Varian iX, whereas discrepancies of 2.08% - 2.09% (combined uncertainties of 1.87% - 2.13%, k = 1) are observed using the Cyberknife system. Given the agreement between detectors and the combined standard uncertainties, the data from Varian iX could be considered the most accurate and consequently a weighted average factor of 0.902 ± 0.006 could be used for the Cyberknife VSI system reference field. Within measurement uncertainties, the absorbed dose rate measured in the Cyberknife VSI system reference field was found to be independent of the dosimeters used. These results suggest that the absorbed dose measured at a point within a given field size should be the same, regardless the dosimeter used, if their dosimetric characteristics are well known. This highlighted the importance of performing dosimetry by controlling all parameters that could affect the dosimeter response. One can conclude that radiochromic film dosimetry can be considered as an appropriate alternative for measuring absorbed dose to water rate.展开更多
基金Supported by Weifang Comprehensive Experimental Station Project of National Watermelon and Melon Industrial Technology System(CARS-25)Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018D05)
文摘In order to provide theoretical basis and data support for improving the production mode of covering,this study investigated the nighttime air temperature formed by multiple layers of films with tunnel sheds and small tunnel sheds as trial subjects.The experiment was carried out in four tunnel sheds with 0 or 2 small tunnel sheds covered by 0,1,2 and 3 layers of films,respectively in Jinan,Shandong Province in winter of 2018.The nighttime air temperatures of tunnel sheds and small tunnel sheds formed by 1,2,3 and 4 layers of plastic film were measured and analyzed to simulate the temperature environment of early-spring season.The results showed that there were little differences between the nighttime air temperatures inside the tunnel sheds which was installed 0-3-layer small tunnel sheds inside,and there were uncertainty in the values of the air temperatures inside and outside the tunnel sheds;and the nighttime temperature conditions were constantly improved with the number of plastic film layers increasing under the conditions of this study.The analysis indicated that the mechanism of raising the temperature surrounded by plastic film was not only due to its own thermal parameter (thermal conductivity).MATLAB fitting analysis results showed that the increment of nighttime temperature in multi-film coverings became smaller with the number of film layers increasing.In this study,the number of layers in multi-film covering should not exceed 5 layers.
文摘This work investigated the absorbed dose to water rate under reference conditions in a Cyberknife VSI system using radiochromic films EBT3 and MD-V3 and three ionization chambers: an Exradin A12 and two FC65P Welhöfer Scanditronix with different serial numbers. The correction factor,, was studied using a Varian iX linac and the Cyberknife system. The measurements in the Varian iX were performed in a 10 × 10 cm2 field, 10 cm depth in liquid water at 90 cm and 70 cm SSD and in a 5.4 × 5.4 cm2 field, 10 cm depth at 70 cm SSD to simulate the Cyberknife conditions. In the Cyberknife system, measurements were performed using ionization chambers and both film types at 70 cm SSD and 10 cm depth in its 6 cm diameter reference field. The results indicate that ?is independent of the dosimeters and the evaluation methods. Maximum differences of 0.22% - 0.55% (combined uncertainties of 1.22% - 1.98%, k = 1) are obtained on ?using Varian iX, whereas discrepancies of 2.08% - 2.09% (combined uncertainties of 1.87% - 2.13%, k = 1) are observed using the Cyberknife system. Given the agreement between detectors and the combined standard uncertainties, the data from Varian iX could be considered the most accurate and consequently a weighted average factor of 0.902 ± 0.006 could be used for the Cyberknife VSI system reference field. Within measurement uncertainties, the absorbed dose rate measured in the Cyberknife VSI system reference field was found to be independent of the dosimeters used. These results suggest that the absorbed dose measured at a point within a given field size should be the same, regardless the dosimeter used, if their dosimetric characteristics are well known. This highlighted the importance of performing dosimetry by controlling all parameters that could affect the dosimeter response. One can conclude that radiochromic film dosimetry can be considered as an appropriate alternative for measuring absorbed dose to water rate.