期刊文献+
共找到469篇文章
< 1 2 24 >
每页显示 20 50 100
A discontinuous smooth particle hydrodynamics method for modeling deformation and failure processes of fractured rocks
1
作者 Chengzhi Xia Zhenming Shi +1 位作者 Bo Li Maomao Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期705-721,共17页
A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,... A discontinuous smoothed particle hydrodynamics(DSPH)method considering block contacts is originally developed to model the cracking,frictional slip and large deformation in rock masses,and is verified by theoretical,numerical and/or experimental results.In the DSPH method,cracking is realized by breaking the virtual bonds via a pseudo-spring method based on Mohr–Coulomb failure criteria.The damaged particles are instantaneously replaced by discontinuous particles and the contact bond between the original and discontinuous particles is formed to simulate the frictional slip and separation/contraction between fracture surfaces based on the block contact algorithm.The motion of rock blocks and the contact force of discontinuous particles are determined following Newton's second law.The results indicate that the DSPH method precisely captures the cracking,contact formation and complete failure across six numerical benchmark tests.This single smoothed particle hydrodynamics(SPH)framework could significantly improve computational efficiency and is potentially applicable to broad multi-physical rock engineering problems of different scales. 展开更多
关键词 Discontinuous smoothed particle hydrodynamics(Dsph) Pseudo-spring method CRACKING CONTACT Frictional slip
下载PDF
A flexible multiscale algorithm based on an improved smoothed particle hydrodynamics method for complex viscoelastic flows
2
作者 Jinlian REN Peirong LU +2 位作者 Tao JIANG Jianfeng LIU Weigang LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1387-1402,共16页
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ... Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results. 展开更多
关键词 multiscale method improved smoothed particle hydrodynamics(sph) dissipative particle dynamics(DPD) multiscale universal interface(MUI) complex viscoelastic flow
下载PDF
An Innovative Coupled Common-Node Discrete Element Method-Smoothed Particle Hydrodynamics Model Developed with LS-DYNA and Its Applications
3
作者 SHEN Zhong-xiang WANG Wen-qing +2 位作者 XU Cheng-yue LUO Jia-xin LIU Ren-wei 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期467-482,共16页
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP... In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure. 展开更多
关键词 common-node DEM-sph fluid-structure interaction discrete element method smoothed particle hydrodynamics
下载PDF
Smoothed-Particle Hydrodynamics Simulation of Ship Motion and Tank Sloshing under the Effect of Regular Waves 被引量:1
4
作者 Mingming Zhao Jialong Jiao 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1045-1061,共17页
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to... Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships. 展开更多
关键词 LNG carrier tank sloshing SEAKEEPING inner and external fluid coupling smoothed particle hydrodynamics(sph)
下载PDF
Numerical Simulation of Bubble Formation at a Single Orifice in Gas-fluidized Beds with Smoothed Particle Hydrodynamics and Finite Volume Coupled Method 被引量:2
5
作者 F.Z.Chen H.F.Qiang W.R.Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第1期41-68,共28页
A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynami... A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynamics,whereas gas phase is discretized by finite volume method.Drag force,gas pressure gradient,and volume fraction are used to couple the two methods.The effect of injection velocities,particle sizes,and particle densities on bubble growth is analyzed using the coupled method.The simulation results,obtained for two-dimensional geometries,include the shape and diameter size of a bubble as a function of time;such results are compared with experimental data,previous numerical results,and other approximate model predictions reported in the literature.Moreover,the flow profiles of gas and particle phases and the temperature distribution by the heat transfer model around the forming bubble are also discussed.All results show that the coupled method efficiently describes of the bubble formation in fluidized beds.The proposed method is applicable for solving gas–solid two-phase flow in fluidization. 展开更多
关键词 coupled method smoothed particle hydrodynamics FINITE volumemethod BUBBLE formation heat transfer FLUIDIZATION
下载PDF
Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows 被引量:2
6
作者 Yrj Jun Huang Ole Jφrgen Nydal 《Theoretical & Applied Mechanics Letters》 CAS 2012年第1期55-58,共4页
Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. ... Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity. 展开更多
关键词 discrete-element method smoothed particle hydrodynamics liquid-solid flows lid-driven cavity
下载PDF
Simulation of mould filling process using smoothed particle hydrodynamics 被引量:4
7
作者 何毅 周照耀 +1 位作者 曹文炅 陈维平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2684-2692,共9页
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu... The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process. 展开更多
关键词 high pressure die casting (HPDC) smoothed particle hydrodynamics sph filling process moving least squares method
下载PDF
Quasi-static simulation of droplet morphologies using a smoothed particle hydrodynamics multiphase model 被引量:4
8
作者 Xiangwei Dong Jianlin Liu +1 位作者 Sai Liu Zengliang Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第1期32-44,I0002,共14页
Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is p... Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is proposed, combined with a robust smoothed particle hydrodynamics multiphase algorithm (Zhang 2015). The first step of the method is the creation of the virtual liquid-gas interface across the solid surface by means of dummy particles, thus the calculated surface tension near the triple point serves to automatically modulate the dynarnic contact line towards the equilibrium state. We simulate the evolution process of initially square liquid lumps on fiat and curved surfaces. The predictions of droplet profiles are in good agreement with the analytical solutions provided that the macroscopic contact angle is accurately implemented. Compared to the normal correction method, the present method is straightforward without the need to manually alter the normal vectors. This study presents a robust algorithm capable of capturing the physics of the static welling. It may hold great potentials in bio-inspired superhydrophobic surfaces, oil displacement, microfluidics, ore floatation, etc. 展开更多
关键词 smoothed particle hydrodynamics Virtual interface method MULTIPHASE flow MACROSCOPIC contact angle DROPLET morphology Curved surfaces
下载PDF
Numerical Simulation of Dam Breaking Using Smoothed Particle Hydrodynamics and Viscosity Behavior 被引量:4
9
作者 郑兴 段文洋 《Journal of Marine Science and Application》 2010年第1期34-41,共8页
Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a ... Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research. 展开更多
关键词 meshless method smoothed particle hydrodynamics sph dam breaking free surface flow
下载PDF
A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/neuro-fuzzy computations and ultrasonic testing 被引量:2
10
作者 A.R.Eivani H.Vafaeenezhad +1 位作者 H.R.Jafarian J.Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1311-1335,共25页
The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a ... The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy. 展开更多
关键词 Friction stir welding(FSW) smoothed particle hydrodynamics(sph) Adaptive neuro-fuzzy inference system(ANFIS) Ultrasonic Residual stress
下载PDF
Smoothed Particle Hydrodynamics(SPH)Simulations of Drop Evaporation:A Comprehensive Overview of Methods and Applications
11
作者 Leonardo Di G.Sigalotti Carlos A.Vargas 《Computer Modeling in Engineering & Sciences》 2025年第3期2281-2337,共57页
The evaporation ofmicrometer and millimeter liquid drops,involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface,is encountered in many natural and indus... The evaporation ofmicrometer and millimeter liquid drops,involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface,is encountered in many natural and industrial processes as well as in numerous engineering applications.Therefore,understanding and predicting the dynamics of evaporating flows have become of primary importance.Recent efforts have been addressed using the method of Smoothed Particle Hydrodynamics(SPH),which has proven to be very efficient in correctly handling the intrinsic complexity introduced by the multiscale nature of the evaporation process.This paper aims to provide an overview of published work on SPH-based simulations related to the evaporation of drops suspended in static and convective environments and impacting on heated solid surfaces.After a brief theoretical account of the main ingredients necessary for the modeling of drop evaporation,the fundamental aspects of SPH are revisited along with the various existing formulations that have been implemented to address the challenges imposed by the physics of evaporating flows.In the following sections,the paper summarizes the results of SPH-based simulations of drop evaporation and ends with a few comments on the limitations of the current state-of-the-art SPHsimulations and future lines of research. 展开更多
关键词 Drop evaporation surface tension heat and mass transfer phase separation smoothed particle hydrodynamics(sph) boiling evaporation explosive vaporization droplet/wall interaction
下载PDF
Numerical analysis of submarine landslides using a smoothed particle hydrodynamics depth integral model 被引量:3
12
作者 WANG Zhongtao LI Xinzhong +1 位作者 LIU Peng TAO Yanqi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期134-140,共7页
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current... Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection. 展开更多
关键词 sliding velocity runout distance smoothed particle hydrodynamics depth integral method frictional rheological model erosion effect
下载PDF
An SPH Framework for Earthquake-Induced Liquefaction Hazard Assessment of Geotechnical Structures
13
作者 Sourabh Mhaski G.V.Ramana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期251-277,共27页
Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is es... Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is essential for designing resilient infrastructure.The present study develops a Smoothed Particle Hydrodynamics(SPH)framework for earthquake-induced liquefaction hazard assessment of geotechnical structures.The coupled flowdeformation behaviour of soils subjected to cyclic loading is described using the PM4Sand model implemented in a three-phase,single-layer SPH framework.A staggered discretisation scheme based on the stress particle SPH approach is adopted to minimise numerical inaccuracies caused by zero-energy modes and tensile instability.Further,non-reflecting boundary conditions for seismic analysis of semi-infinite soil domains using the SPH method are proposed.The numerical framework is employed for the analysis of cyclic direct simple shear test,seismic analysis of a level ground site,and liquefaction-induced failure of the Lower San Fernando Dam.Satisfactory agreement for liquefaction triggering and post-failure behaviour demonstrates that the SPH framework can be utilised to assess the effect of seismic loading on field-scale geotechnical structures.The present study also serves as the basis for future advancements of the SPH method for applications related to earthquake geotechnical engineering. 展开更多
关键词 EARTHQUAKE SEISMIC LIQUEFACTION stress particle PM4Sand smoothed particle hydrodynamics(sph)
下载PDF
基于SPH-DEM的水下散粒体滑坡涌浪机理研究
14
作者 高景芝 陈丁 姚学昊 《河南科学》 2025年第3期356-365,共10页
精准预测滑坡体的运动和自由表面波浪的生成是水下滑坡研究的关键。本文结合光滑粒子流体动力学(SPH)与离散单元法(DEM)各自的优势,并考虑水体在散粒体滑坡中的渗透作用,建立了适用于分析水下散粒体滑坡涌浪问题的SPH-DEM耦合模型。通过... 精准预测滑坡体的运动和自由表面波浪的生成是水下滑坡研究的关键。本文结合光滑粒子流体动力学(SPH)与离散单元法(DEM)各自的优势,并考虑水体在散粒体滑坡中的渗透作用,建立了适用于分析水下散粒体滑坡涌浪问题的SPH-DEM耦合模型。通过U型管多孔介质渗透算例,进一步验证了模型所计算的渗透力的准确性,证明了SPH-DEM耦合模型在模拟土-水耦合问题上的可行性和有效性。对水下可变形滑坡问题进行模拟计算,阐述了水下散粒体滑坡的渗透机制,并系统研究了渗透系数对散粒体滑坡变形和波浪形态的影响,发现随着渗透系数的增加,散粒体滑坡变形程度与最大首浪浪高均呈对数变化。进一步考虑不同土体质量与渗透系数对散粒体滑坡形态以及涌浪高度的影响,得到散粒体滑坡变形的拟合公式。 展开更多
关键词 水下滑坡涌浪 土-水耦合 光滑粒子流体动力学 离散元 渗透系数
下载PDF
船舶操纵模拟器中基于SPH的流固耦合模拟
15
作者 王一丁 任鸿翔 +1 位作者 李海江 桑家军 《计算机仿真》 2025年第1期219-223,共5页
为提升船舶操纵模拟器中流固耦合场景的真实感,提出一种光滑粒子流体动力学模拟方法的改进方案。给出一种混合SPH框架,融合了DFSPH方法的速度散度求解器和基于位置动力学方法的密度约束求解器,有效增强粒子不可压缩性并节省计算时间。... 为提升船舶操纵模拟器中流固耦合场景的真实感,提出一种光滑粒子流体动力学模拟方法的改进方案。给出一种混合SPH框架,融合了DFSPH方法的速度散度求解器和基于位置动力学方法的密度约束求解器,有效增强粒子不可压缩性并节省计算时间。通过对刚体表面进行三维泊松盘采样将网格模型转化成粒子模型,拆分流体粒子的支持域,结合单层非均匀采样,得到了较为真实的流固耦合场景。上述方法可以有效提高船舶操纵模拟器中刚体与海浪交互的真实感。 展开更多
关键词 船舶操纵模拟器 海洋场景仿真 光滑粒子流体动力学 流固耦合
下载PDF
Real-time Simulation of Gas Based on Smoothed Particle Hydrodynamics 被引量:1
16
作者 ZHU Xiao-lin FAN Cheng-kai LIU Yang-yang 《Computer Aided Drafting,Design and Manufacturing》 2015年第1期68-73,共6页
This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, i... This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, it is not found to apply to gas simulation, since those methods based on SPH can't be used in real-time simulation due to their enormous particles and huge computation. This paper proposes a method for gas simulation based on SPH with a small number of particles. Firstly, the method computes the position and density of each particle in each point-in-time, and outlines the shape of the simulated gas based on those particles. Secondly the method uses the grid technique to refine the shape with the diffusion of particle's density under the control of grid, and get more lifelike simulation result. Each grid will be assigned density according to the particles in it. The density determines the final appearance of the grid. For ensuring the natural transition of the color between adjacent grids, we give a diffuse process of density between these grids and assign appropriate values to vertexes of these grids. The experimental results show that the proposed method can give better gas simulation and meet the request of real-time. 展开更多
关键词 gas simulation smoothed particles hydrodynamics sph 3D grid REAL-TIME
下载PDF
Modelling Dam Break Evolution over a Wet Bed with Smoothed Particle Hydrodynamics: A Parameter Study
17
作者 Patrick Jonsson Par Jonsen +2 位作者 Patrik Andreasson T.Staffan Lundstrom J.Gunnar I.Hellstrom 《Engineering(科研)》 2015年第5期248-260,共13页
When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when perform... When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when performing simulations. Today, there is a lack in the possibility to model such phenomenon with traditional methods. Hence, this work focuses on a parameter study for one alternative simulation tool available, namely the meshfree, Lagrangian particle method Smoothed Particle Hydrodynamics (SPH). The parameter study includes the choice of equation-of-state (EOS), the artificial viscosity constants, using a dynamic versus a static smoothing length, SPH particle spatial resolution and the finite element method (FEM) mesh scaling of the boundaries. The two dimensional SPHERIC Benchmark test case of dam break evolution over a wet bed was used for comparison and validation. The numerical results generally showed a tendency of the wave front to be ahead of the experimental results, i.e. to have a greater wave front velocity. The choice of EOS, FEM mesh scaling as well as using a dynamic or a static smoothing length showed little or no significant effect on the outcome, though the SPH particle resolution and the choice of artificial viscosity constants had a major impact. A high particle resolution increased the number of flow features resolved for both choices of artificial viscosity constants, but at the expense of increasing the mean error. Furthermore, setting the artificial viscosity constants equal to unity for the coarser cases resulted in a highly viscous and unphysical solution, and thus the relation between the artificial viscosity constants and the particle resolution and its impact on the behavior of the fluid needed to be further investigated. 展开更多
关键词 sph Dam Break smoothed particle hydrodynamics
下载PDF
Numerical Simulation of Water Mitigation Effects on Shock Wave with SPH Method 被引量:3
18
作者 毛益明 方秦 +1 位作者 张亚栋 高振儒 《Transactions of Tianjin University》 EI CAS 2008年第5期387-390,共4页
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numeric... The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect. 展开更多
关键词 water mitigation Riemann solution smoothed particle hydrodynamics sph method shock wave
下载PDF
Numerical Simulation of Shaped Charge Jet Using Multi-Phase SPH Method 被引量:1
19
作者 强洪夫 王坤鹏 高巍然 《Transactions of Tianjin University》 EI CAS 2008年第B10期495-499,共5页
Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The mul... Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The multi-phase SPH (MSPH) method was applied to improving the stabil-ity, which smoothes the particle density and makes pressure continuous at interfaces. Numericalexamples of jet forming process were used to test capability of the MSPH method. The results show that the method remains algorithm stability for large density gradient between the jets and gaseous products and has potential application to both the explosion and the jet problems. The effect of initiation ways of the shaped charge was discussed as well. 展开更多
关键词 smoothed particle hydrodynamics sph MULTI-PHASE large deformation shaped charge jet INITIATION
下载PDF
颗粒流运动SPH方法及滑坡破碎效应研究 被引量:1
20
作者 林川 林彦喆 +2 位作者 苏燕 潘依琳 高献 《水力发电学报》 CSCD 北大核心 2024年第7期61-72,共12页
山体滑坡是全球范围内多发的一种地质灾害。由于滑坡具有突发性和破坏性强的特点,建立有效的数值分析模型将有助于制定针对性的防治策略。本文针对滑坡运动过程中表现出的颗粒流特性,基于μ(I)模型提出了针对浅层滑坡的动态摩擦系数表达... 山体滑坡是全球范围内多发的一种地质灾害。由于滑坡具有突发性和破坏性强的特点,建立有效的数值分析模型将有助于制定针对性的防治策略。本文针对滑坡运动过程中表现出的颗粒流特性,基于μ(I)模型提出了针对浅层滑坡的动态摩擦系数表达式,并构建了对应的光滑粒子流体动力学(SPH)方法求解框架。考虑到颗粒破碎对滑坡运动性的显著影响,结合基于破坏势能的颗粒破碎法则,建立μ(I)模型中基底摩擦力与颗粒分布之间的关系。通过两个经典的三维斜面模型试验,验证了μ(I)模型在滑坡运动分析中的应用价值,并进行了颗粒破碎效应参数敏感性分析,为后续滑坡灾害的防治工作提供参考。 展开更多
关键词 滑坡 μ(I)模型 光滑粒子流体动力学 颗粒破碎
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部