期刊文献+
共找到9,311篇文章
< 1 2 250 >
每页显示 20 50 100
Review of research on high-speed railway subgrade settlement in soft soil area 被引量:10
1
作者 Shunhua Zhou Binglong Wang Yao Shan 《Railway Engineering Science》 2020年第2期129-145,共17页
Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibil... Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided. 展开更多
关键词 High-speed railway SUBGRADE soft soil foundation Pile-supported embankment soil arching Settlement prediction
下载PDF
Fractional description of mechanical property evolution of soft soils during creep 被引量:15
2
作者 De-shun YIN Yan-qing LI +1 位作者 Hao WU Xiao-meng DUAN 《Water Science and Engineering》 EI CAS CSCD 2013年第4期446-455,共10页
The motion of pore water directly influences mechanical properties of soils,which are variable during creep.Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behav... The motion of pore water directly influences mechanical properties of soils,which are variable during creep.Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water.Based on the idea of using the fractional order to reflect mechanical properties of soils,a fractional creep model is proposed by introducing a variable-order fractional operator,and realized on a series of creep responses in soft soils.A comparative analysis illustrates that the evolution of mechanical properties,shown through the simulated results,exactly corresponds to the motion of pore water and the solid skeleton.This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep.It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure. 展开更多
关键词 蠕变过程 力学性能 分数阶 软土 演化 孔隙水压力 蠕变模型 运动特征
下载PDF
Vacuum preloading combined electroosmotic strengthening of ultra-soft soil 被引量:20
3
作者 彭劼 熊雄 +1 位作者 MAHFOUZ A H 宋恩润 《Journal of Central South University》 SCIE EI CAS 2013年第11期3282-3295,共14页
To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process,a comprehensive experimental investigation was performed.A laboratory te... To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process,a comprehensive experimental investigation was performed.A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis.Several factors were taken into consideration,including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area.The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly,with an increase of approximately 60%,and reduce the water content of the soil on the basis of consolidation of vacuum preloading,however,further settlement is not obvious with only 1.7 mm.The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading.Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions,the concentrations of Al2O3in the VPCEO region increase by 2.2%,1.5%,and 0.9%at the anode,the midpoint between the electrodes,and the cathode,respectively. 展开更多
关键词 真空预压 电渗 软土 加固 实验室测试 改良土壤 X-射线荧光 强化效果
下载PDF
Research of deformation prediction method of soft soil deep foundation pit 被引量:7
4
作者 麻凤海 郑艳 杨帆 《Journal of Coal Science & Engineering(China)》 2008年第4期637-639,共3页
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio... In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects. 展开更多
关键词 基坑工程 神经元网络 变形预报 建筑工程
下载PDF
Design parameter optimization of beam foundation on soft soil layer with nonlinear finite element 被引量:2
5
作者 魏红卫 吴亚中 喻泽红 《Journal of Central South University》 SCIE EI CAS 2012年第6期1753-1763,共11页
Finite element method was performed to investigate the influences of beam stiffness,foundation width and cushion thickness on the bearing capacity of beam foundation on underlying weak laminated clay.The comparison be... Finite element method was performed to investigate the influences of beam stiffness,foundation width and cushion thickness on the bearing capacity of beam foundation on underlying weak laminated clay.The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement.According to the numerical results,the beam width,length,cross section and cushion thickness were optimized.The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation.However,the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness.For the foundations on underlying weak layer,increasing foundation width merely might be inadequate for improving the bearing capacity,and the appropriate width and cushion thickness depend on the response of subgrade.A comparison between rigid and flexible beams was also discussed.The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions,and the flexible beam foundation appears more adaptable to various subgrades.The proposed flexible beam foundation was adopted in engineering.According to the calculation results,beam width of 2.4 m and cushion thickness of 0.8 m are proposed,and a flexible beam foundation is applied in the optimized design,which is confirmed reasonable by the actual engineering. 展开更多
关键词 基础设计 参数优化 柔性梁 非线性有限元 软土层 垫层厚度 基础宽度 计算结果
下载PDF
Influence of sand content on the flow characteristics of soft soil under cyclic and high-frequency vibration 被引量:1
6
作者 Zhuang Zhongxun Yin Deshun +1 位作者 Bai Chunyu Zhou Chao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第3期487-496,共10页
The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways. In order to verify the feasibility of blending coarse sand in modifying soft subsoil, undrai... The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways. In order to verify the feasibility of blending coarse sand in modifying soft subsoil, undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies. Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil. The infl uence of sand content on fl ow characteristics is also studied in detail, and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz. Under the condition of cyclic vibration, the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle, and the increase in sand content can make the fl ow characteristics present a faster convergent tendency. 展开更多
关键词 SAND content FLOW characteristics PULLING SPHERE tests soft soil
下载PDF
Collapse of a Deep Excavated Foundation Pit in the Soft Soils by 3-D FEM 被引量:1
7
作者 ZHUANG Haiyang XUE Xuchao YU Xu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期162-174,共13页
In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summ... In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified. 展开更多
关键词 DEEP EXCAVATION SUBWAY STATION COLLAPSE process numerical modeling soft soil
下载PDF
A 3D Numerical Simulation of Sand Drain Element in the Soft Soil of Guangzhou-Zhujiang Highway,China
8
作者 W.O.Balogun G.Habiyaremye 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期240-240,共1页
The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated ... The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated to transform the configuration of a sand drain into a sand wall to minimize or eliminate the excessive stress and primary settlement on the road base.This was barely considered in the past. According to soil mechanics theory and seepage characteristics of sand drain in road base foundations, a 3D sand drain element in FEM format was generated,and a matrix expression was formulated which was introduced into 3D Biot Consolidation 展开更多
关键词 SAND DRAIN ELEMENT 3D Biot FEM soft soil FOUNDATION Abaqus Guangzhou-Zhujiang
下载PDF
Composite Consolidation Coefficient Analysis of Soft Soil with Drainage Water
9
作者 Jihui Ding Kaikai You +1 位作者 Zhongmin Feng Dongxu Sun 《World Journal of Engineering and Technology》 2019年第4期572-582,共11页
The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on... The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on the background of the soft soil in Shantou, Guangdong Province, a series of experimental studies on the consolidation characteristics were carried out by using the modified consolidation instrument. And the concept of the composite consolidation coefficient of the drained water body was put forward. The composite consolidation coefficient reflects the consolidation characteristics of soft soil with drainage water, The test results showed that: 1) The consolidation test with drainage plate is basically consistent with the load compression curve, but its consolidation rate is fast, which is reflected by the composite consolidation coefficient. 2) In the consolidation test of water bodies with drainage, the vertical consolidation coefficient and radial consolidation coefficient are calculated by “three-point method”, and then the composite consolidation coefficient is obtained. The composite consolidation coefficient decreases with the increase of drain spacing ratio, effective drainage diameter and drainage height, which is basically consistent with the theoretical formula. 3) The vertical consolidation coefficient and radial consolidation coefficient decrease with the increase of the diameter of the sample, and the difference is obvious when the load is large. The large-size model with a diameter of 100 mm and a height of 100 mm is about 1.35 times of the vertical consolidation coefficient of the conventional consolidation test. 展开更多
关键词 BLOW FILL soft soil Drainage Unit CONSOLIDATION COEFFICIENT CONSOLIDATION Test
下载PDF
Soft soil Treatment for Large Coal-fired Power Plant
10
作者 Zhang Jianfeng Guo Peixin +1 位作者 Lu Zhiming Jin Zhixiong 《Electricity》 1997年第4期42-44,共3页
This paper describes the engineeringapplication of soil improvement in manylarge coal-fired power plants designed byEast China Electric Power Design Institute.Soil improvement technology is especiallysuitable for stre... This paper describes the engineeringapplication of soil improvement in manylarge coal-fired power plants designed byEast China Electric Power Design Institute.Soil improvement technology is especiallysuitable for strengthening soft soil. Exceptfor increasing soil bearing capacity andcontrolling soil deformation, it can also beused to eliminate loose sand liquefactionunder seismic loading, or to strengthen slopestability. The applications introduced in thispaper include dynamic consolidation,drained consolidation, stone pile, soil-cement mixed pile, jet grouting andcompacting grouting, reinforced earth, etc.The kinds of soil layer to be improvedinclude typical Shanghai soft soil, loose siltand silt sand, miscellaneous fill andhydraulic filled soil. As a result of thetreatments described in this paper, nobuilding fissures caused by soil differentialsettlement had ever occurred in the powerplants engineered by ECEPDI andconstructed in 1990s. 展开更多
关键词 soft soil soil IMPROVEMENT soil BEARING capacity soil SETTLEMENT
下载PDF
Response of Surface Soft Soil and Fine-Grained Sand Layers to Seismic Waves
11
作者 Xu Yonglin and Xiong Lijun Seismological Bureau of Shanghai Municipality, Shanghai 200062, China 《Earthquake Research in China》 2003年第4期392-397,共6页
Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy cas... Shanghai is located in eastern China and is built on overburden soil layers. It can be seen from the Mexico M S=8.1 earthquake on September 19, 1985 and the Hanshin M S=7.4 earthquake on January 17,1995 that heavy casualties and property losses have a direct relationship with overburden soil layers. Ground motions caused by earthquakes are significantly amplified when passing through the soil layers. Under the influence of these amplified motions, building structures, whose nature frequency is within the frequency band of soil amplification response, will experience more severe damage than those built on bedrock. Therefore, engineering seismologists have paid considerable attention the amplification responses in the Shanghai overburden soil layers. The amplification responses of soil and sand layers in this paper are given by the M L=4.1 earthquake in Nantong, Jiangsu Province on December 25, 2001 at 31.8° N, 120.9° E. It can be seen that the responses of soil and sand layers are very different. That is important. 展开更多
关键词 地震响应 软土 地震观测 深部钻探
下载PDF
Reinforcement Technology for Soft Soil Roadbed in the Widened Section of Expressway Expansion
12
作者 Zhiqiang Qiu Yun Shi Lei Jiang 《Journal of World Architecture》 2024年第2期25-30,共6页
This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement tech... This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement technology for wide sections,and its practical application.The analysis aims to offer guidance on applying soft soil roadbed wide section reinforcement technology and enhancing the overall quality of similar projects. 展开更多
关键词 Expressway Expansion project Widened section soft soil roadbed Reinforcement treatment
下载PDF
Earthquake response of wrap faced embankment on soft clay soil in Bangladesh
13
作者 Ripon Hore Sudipta Chakraborty +2 位作者 Kamruzzaman Kamrul Ayaz Mahmud Shuvon Mehedi AAnsary 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期703-718,共16页
A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.... A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.The amplification of acceleration,displacement,pore water pressure,and strain response were measured while varying input accelerations and surcharge pressures.Time histories of the Kobe record of the 1995 Hanshin earthquake were used as the input seismic motion.The input acceleration was 0.05 g,0.1 g,0.15 g,and 0.2 g,and different surcharge pressures were 0.70 kPa,1.12 kPa,and 1.72 kPa with relative density of Sylhet sand fixed to 48%.The output data from the shaking table tests and the numerical analysis performed through the PLAXIS 3D software were compared,and these findings were also compared with some earlier similar studies.The acceleration amplification,displacement,pore water pressure,and strain(%)changed along the elevation of the embankment and acceleration response increased with the increase in base acceleration.The increase was more noticeable at higher elevations.These findings enrich the knowledge of predicting the dynamic behavior of wrap-faced embankments and enable the design parameters to be adjusted more accurately. 展开更多
关键词 shaking table test soft clayey soil kobe earthquake seismic wave wrap-faced soil embankment
下载PDF
Soil Microstructure Evolution and Macro Deformation Mechanism for Controlling Construction Disturbance in Shanghai Soft Soil 被引量:2
14
作者 贾坚 谢小林 杨科 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第6期713-718,共6页
Abundant practical evidences have indicated that the soil progressively loses its structural configuration under construction disturbance and this can result in long-term macro deformation.The fundamental understandin... Abundant practical evidences have indicated that the soil progressively loses its structural configuration under construction disturbance and this can result in long-term macro deformation.The fundamental understanding of soil microstructure evolution subject to construction disturbance is necessary for controlling disturbance in excavation projects and minimizing ground settlement.The microstructure of Shanghai soft soil is investigated in this study.The laboratory isotropic compression tests are respectively performed on the virgin soil and the reconstructed Shanghai soft soil to investigate the macro deformation of soil under disturbance.Discrete element method model is used to study the micro particle level responses of soil under disturbance.The laboratory tests and numerical simulations provide theoretical basis for construction disturbance mitigation to ensure safety and stability of excavation projects. 展开更多
关键词 Shanghai soft soil soil disturbance MICROSTRUCTURE soil deformation degree of disturbance
原文传递
Engineering Geological Zoning of Soft-Soil Foundation Based on Combination Weighting and Extension Methods 被引量:1
15
作者 孙明乾 王清 +4 位作者 陈剑平 李严 宋盛渊 鲍硕超 阮云凯 《Journal of Donghua University(English Edition)》 EI CAS 2016年第3期453-461,共9页
Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological enviro... Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result. 展开更多
关键词 soft soil foundation engineering geological zoning combination weighting method extension method
下载PDF
A practical ANN model for predicting the excavation-induced tunnel horizontal displacement in soft soils 被引量:1
16
作者 Zhong-Kai Huang Dong-Mei Zhang Xiao-Chuang Xie 《Underground Space》 SCIE EI 2022年第2期278-293,共16页
The objective of this study is to propose an artificial neural network(ANN)model to predict the excavation-induced tunnel horizontal displacement in soft soils.For this purpose,a series of finite element data sets fro... The objective of this study is to propose an artificial neural network(ANN)model to predict the excavation-induced tunnel horizontal displacement in soft soils.For this purpose,a series of finite element data sets from rigorously verified numerical models were collected to be utilized for the development of the ANN model.The excavation width,the excavation depth,the retaining wall thickness,the ratio of the average shear strength to the vertical effective stress,the ratio of the average unloading/reloading Young’s modulus to the vertical effective stress,the horizontal distance between the tunnel and retaining wall,and the ratio of the buried depth of the tunnel crown to the excavation depth were chosen as the input variables,while the excavation-induced tunnel horizontal displacement was considered as an output variable.The results demonstrated the feasibility of the developed ANN model to predict the excavation-induced tunnel horizontal displacement.The proposed ANN model in this study can be applied to predict the excavation-induced tunnel horizontal displacement in soft soils for practical risk assessment and mitigation decision. 展开更多
关键词 Artificial neural network EXCAVATION Tunnel horizontal displacement soft soils
下载PDF
Elasto-Plastic Modeling of Soft Soil Considering Degradation of Stiffness
17
作者 张浩 陈秋实 +1 位作者 陈锦剑 王建华 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第6期683-689,共7页
The stiffness has a large influence on the behavior of soils. Its value is affected by some of the soils properties, such as the over consolidated ratio(OCR), the effective normal stress, and the plasticity index etc.... The stiffness has a large influence on the behavior of soils. Its value is affected by some of the soils properties, such as the over consolidated ratio(OCR), the effective normal stress, and the plasticity index etc. In this paper, the numerical modeling of soft soils was carried out using an improved elasto-plastic S-clay1 model accounting for degradation of stiffness. The relation between the stiffness and the shear strain was established based on a large number of experimental data. The effects of strain-dependent stiffness of normally consolidated soils and over consolidated soils on the stress-strain behavior were studied through a comparison of the simulations with the experimental results of undrained triaxial compression tests. The results show that the behaviors of soils can be well predicted with the improved constitutive model, particularly before the peak stress. 展开更多
关键词 soft soil strain-dependent modulus S-clay1 model undrained compression test
原文传递
Effects of deep soil mixing on existing shield tunnels in soft soil ground
18
作者 Huangsong Pan Liyuan Tong +1 位作者 Zhansheng Wang Tao Yang 《Underground Space》 SCIE EI 2022年第4期724-733,共10页
To mitigate the impact of adjacent construction on existing shield tunnels,deep soil mixing(DSM)has been widely used to reinforce the soft soil ground around shield tunnels.However,the construction of DSM may cause th... To mitigate the impact of adjacent construction on existing shield tunnels,deep soil mixing(DSM)has been widely used to reinforce the soft soil ground around shield tunnels.However,the construction of DSM may cause the movement of existing shield tunnels under soft soil and sensitive ground conditions,and reasonable installation parameters will reduce the impact of DSM construction on the existing shield tunnels.Based on the field tests of DSM installation parameters and a program of field measurements of existing shield tunnels during the DSM construction in Suzhou,the reasonable installation parameters of DSM were selected,and the movement of soil behind the soil mixing walls(SMWs)during multirow DSM installation was investigated.The movement of the shield tunnels caused by DSM construction were discussed in detail.The field test results showed that the DSM columns installed at a higher speed and a lower water-cement ratio enlarged the movement of the surrounding soil.The DSM should be installed at a lower speed and a higher watercement ratio to reduce the movement of the shield tunnels.The field measurement results showed that the displacement of the tunnel lining was primarily caused by the construction of DSM zones beside the shield tunnels,which led to vertical compression and horizontal expansion of the tunnel lining.The construction of DSM immediately above the shield tunnels caused uplift to the tunnels.In addition,the deformed shapes of the two shield tunnels were asymmetric,and the displacement of the spring lining was larger than that of the crown.By taking the reasonable installation parameters of DSM and under the protection of the SMWs,the deformation of the shield tunnels caused by the construction of DSM was effectively controlled,and the maximum displacement was within the control value of the shield tunnels in this study. 展开更多
关键词 Deep soil mixing soft soil Shield tunnel Field tests Field measurement
下载PDF
Numerical Comparative Study on the Effective Replacement Thickness of Traditional Stone Coarse Aggregate or Steel-Slag Aggregate Mixtures in Improved Soft Fine Soils
19
作者 Naema Ali Ali 《Journal of Surface Engineered Materials and Advanced Technology》 CAS 2022年第2期23-33,共11页
This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by... This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width. 展开更多
关键词 Steel Slag Coarse Aggregate soft soil Improvement Finite Elements Method Stress-Strain Behavior
下载PDF
基于soft-soil轮胎的自行火炮动态响应仿真研究 被引量:3
20
作者 刘昕运 马吉胜 +1 位作者 汪伟 赵家丰 《火炮发射与控制学报》 北大核心 2017年第3期25-30,共6页
为掌握某型自行火炮在几种典型软土地面上的行驶与射击动态响应规律,探索前轮车辙对后轮的影响,基于多体系统动力学软件ADAMS和有限元软件ABAQUS,建立自行火炮刚柔耦合行驶与射击动力学模型。使用soft-soil轮胎模型,考虑各种土壤的弹塑... 为掌握某型自行火炮在几种典型软土地面上的行驶与射击动态响应规律,探索前轮车辙对后轮的影响,基于多体系统动力学软件ADAMS和有限元软件ABAQUS,建立自行火炮刚柔耦合行驶与射击动力学模型。使用soft-soil轮胎模型,考虑各种土壤的弹塑性、承压特性、剪切特性和轮胎变形等因素,全面分析火炮行驶与行进间射击关键位置的动态响应,得到相比于不考虑前后轮车辙影响的区别和特点。获得更加真实的考虑了地面环境的结论,进一步为作战地面参数化构建技术以及车辆振动干扰研究等提供参考依据。 展开更多
关键词 轮式自行火炮 松软土壤 轮胎模型 车辙 动态响应
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部